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ABSTRACT

The purpose of this thesis i=s to study the teste of
statistical hypotheses with restricted alternatives in a
bivartate exponential distribution. 1t congiders, in
particular, the Likelihood Ratio Test C(L.R.T.) and two other
tests called the Minimum Distance Likelihood Ratio Test,
(M.D.L.R.T.> and the Modified L.R.T. The restricted
alternatives consiﬁered here, are some «closed convex cones
with vertex at (1,1) and angle ﬁ*.

This thesis consists of two parts. The first part
contains derivation of  the three tests, and their power
funct.iong for different types of regtrictions, Furthermore,
Gome ‘mnnutanicity and symmetry properties of the power
functions are partially proved. Also, using the results of
Birnbaum 19682 and under €1970>, and for certain restric—
tiongs, it is proved that the L.R.T., \.D.L.R. T. and Modified
L.R. T are admissible teste.

The second part contains some numerical computationg of
the power fungtion for the different tests and for cone
angles n/6, n/4, n/3, n/2 and 2n. The ﬁables of the power

function suggest gsome remarks on the monotonicty and

dominations of theme tests,
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CHAPTER ONE

TESTING HYPOTHESES UNDER RESTRICTED ALTERNATIVES

1.1 Introduction.

Consider the bivariate independent exponential random
vector (X,Y) with parameters (9,, 0, having probability

density function (pdf) of the form f(x,y;9,,6,2 given by

1 -x/0,-y/ 6,

r(x,y;ei,92> = 5 e , X, ¥ > 0 1.1.1
0492

=0 , btherwise ,
where (Gl,ez)eﬂ, the parameter épace, ~which ie the non—
negative quadrant.
gonsider the testing problem
Hy 1 €6,,0,) = (8,4, 9,5
against 1.1.2D

Hy @ (8,,9,) « VN €8y, 65022
where (8,,, 8,9> are given and
V= {kx,y) - - 610, 69 S Y 5 <x—910) tan ﬁ' + 920}

is a closed convex cone in R? with vertex at O49- 920) and

angle ﬁ* satisfying 0 s B* < ns2. Note that for B* = 2n, the
cone V will reduce to the whole ﬁarameter sEpace.
Without lose of generality, assume that (910,920)=(1,1).

i

Therefore the testing problem (1.2.2) will benome

- 1=
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Hy 1 €6,,0,3 = (1,13
agzainst 1.1.3
Hy : €8,,05) « v N {C1,1>)

Also, the cone V become

V= {(x,y) . x 21,1 <y < Cx-1> tan g* + 1}.

Exponential distribution plays a vital role and is often
proposed for modeling the lifetime distribution of items of
complex equipments such as electronic components, light bulbe
and many others. An example of restricted alternative is the
ordered altrnatives for which the rank order of the means is
given. In mome cases the gqualitative characterist.ics can be
ranked but not egasily measured, therefore, we must deal with
restricted alternatives. A real life example of restricted
alternat.ives can be formulated ams follows. Suppose we have
two factories that produce light bulbs ranked in terms of
average life for their products. The null hypothesie is that
the bulbs produced from the two factories have the sane
average lif'e, and the alternative wmay be that the bulha
produced by the first factory have live twice the life of the
bulb=z produced by the second factory. This testinog problem

is of the form (1.1.2> with certain cone.
In this thesie, the Likelihood Ratio Test. (L.R.T.> for

the testing problem given by (1.1.2) aml its power function

are obtained. In addition, we have +two other tests ealled
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Minimum Distance Likelihood Ratio Test (M.D.L.R.T.> and
Modified L.R.T. Almo, the power function of these tests are
obtained. Furthermnfe, we give some numeriﬁal comparison
between the power function of the tests.

In the following 5ection§ of this chapter, gome
mathematical preliminaries are given in section 1.2. Section
1.3 contains a review of the literature related to the
subject of this thesis. Section 1.4 summarizes the contents

of the thesis.

1.2 Mathematical Preliminaries

Some definitions and theorems that are needed in tLhe

thegis are listed below.

Pefinition (1.2.1)

A set G ¢ R2 is said Lo be convex if for any two polnts

%,y in @, the point ox + (1-eQy is also in G, for all o
such that 0 < o < 1.

thiue that {ox + {1~y : 0O = « 3 1> im the line

segment joining x and y. Therefore, G is convex iff the line

segment between any two points in G is a mubset of 0.

Definiﬁion 1.2.2>.

Consider the problem of teeting the hypotheris
Bg 0 = 90 against Hy 6 e 8,

where 90 and 91 are digjoint subrrts of 6. A test ¢1 is

e
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sald to dominate another test $g if the following +two
conditions hold:
i, Eg ¢4 = Eg 99 Voad,
ii. Eg ¢4 = Eq @0 Y 0 e 8,
Also, ¢4 strictly dominates ¢9 if one of the ahove

inequalities is strict for some 6° e 0.

Definition <1,2,.3)>

A class € of tests, is said to be ctomplete, if, given
any test ¢ not in &, there exists a test ¢g in € which
dominates ¢. If & contains no éubclasa which is complete,

then € is sald to be minimal complete.

Definition C1,2.4)

A test ¢1 is said to be admissible if there existes no
test. which strictly dominate it, otherwire it is eaid to
be inadmissible,

Definltion ¢1.2.8)

Let V be a cone with vertex at (0,0). The cone V° |jg
said to be the dual cone of V, if it can be written in the
form

VO = {yekz P Y.v 5 0, for all v e V}
In some mituations, V? is called the polar cone or the

negative conjugate cone of V.
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pDefinition (1,2.62

For a given c¢loped convex cone v, define an order
relation between points in R* as follows
Let X,Y € Rz then
Xx<(Vly if x =y & V7 ~ (O

where V° is the dual cone of V.

pefinition €1.2.7)

A set G ¢ ®? is said to be a decreasing set. with
respect. Lo cone V or v-decreasing, if for any X,y € Rz,

guch that yel@ and x < [V] y then x G.

Definition €1.2.8>

Let £C(x,0> be pdf such that x e B, 9 « 1 ¢ B where @ is

an open set. Let @ be an open subset of Q. S0, an
o]

est.imator é of @ is called a minimum distance estimator

(M.D.E.) restricted to 60 if it minimizes

I x-0 U* for © e 0.

"~

i.e. é is the projection of the vector x onto the region 6,.

Definition (1.2.9)

1

Let £(x,6> be pdf,and we are given the testing problem
HO:G e @, agaipst Hize & 91
where 8, and @, are disjoint subpets of @, Pefine the

Minimum Distance Likelihood Ratio Test M. D.L.R.T.2> as:

-~ 8 -
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where A=

and éi is the M.D.E, restricted to 6;; i =0, 1.

Theorem ¢1.2.1Y> Birnbaum (198583

Consider a random variable X which has the pdf of the form

x.0
£(x,0) = A(xD> B(O e L oxeR, e enc i

For the testing problem

HD T @ = OD agaipsat Hi_: O 90 ,

where 90 e Intid,
the class of all tests which have convex acceptance reglion
form a complete «class. For the case that 0 contalins

spheres of arbitrary large radii, the class is a minimal

complete class.

Theorem (1.2.2) Eaton (1970)

Consider the setup of the Birnbaum theorem. Let. V be a
closed convex cone with vertex (0,0 in ®". Then for

testing
HD:O = O against. Hy:0 e v N {02,
the class of all tests which has convex and V-decreasing

acceptance region form a minimal complete class,
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1.9 Review of Literature

In this sectlon, we present some of the previous work
related to the testing problem of the exponential distribu-
tion based on restricted or unrestricted alternative space.

Many authors have worked on this type of testing
pfnblems. Most of the work involved is about testing location

or scale parameters under different cnnsiderations.

Consider a random vector X = cxi,...,xk>, which has a

probability denmity function of the form

k 1 Xk
£ Cx, B, O = — exp[ = L ;-8 )] %.203,,0:0,i=1,. ..,k
2 e oy [ Pt LA M R ’
= O ’ elsewhere €1.3.1>
where 3 = (ﬁi,...,ﬁk)' and o0 = (01,...,ok)' are the vector of

location and scale parameters regpect.ively.

N. Singh ({19832 congidered the came that o.=0 v

i=1,...,k and the following testing problem:
H, : ﬁi = 32 B L., = ﬂk =03 , 3 is unepecified, o unknown
againgt

Hy at least two of (3’s are unequal.
He derived the likelihood ratio test, and rhowed that the
L.R.T. reduces to an equivalent test based on a statistic

that has an F-distribution.
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P. 0. ¥ong (1978) considered the crase k = 1 and the
test.ing problem
HD 1 3= Bo vH, Hi 2> ﬁo

or Ho t 3= ﬁo ve. H1 1 3 < Py

where ﬁD is a given parametric value.
Yn
Y1
the n~th order statistics of the random sample, 01 iz called

Let the statistic Q4 = , where Y4» ¥, are the 1-st and

the extremal quotient. The distribution of Q4 i suale free.
He developed a procedure based on the extremal quotient for
tegt.ing the location parameter of’ the exponential

distribution.

Paulson ¢€1941)> considered the cases k = 1 or k = 2 for
the following testing problens:

H, : 34 = 0 when o4 is known, let o4 = 1

H. ﬁi = 0  when o, i’ unknown.

H, ﬁ1= 3, when o4 = 0,

He derived the L.R.T. and the power function of the testing
problems above. These tests are wshown to be completely

unbiarsed.

Epstein and Tsao (1953) considered the case k=2 and t.he
following hypotheses :

Hyq ¢+ 04 = 05 (Assuming that 3,, B, »re known?

“02 1 og = oz.CAsspming t.hat ﬁ1 = 92 ﬂﬂo, rvhere ﬁo im unhknown?

- 8 -
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H03 1 Og = Oy
H04 : 31 = 3, CAssuming that o,,0, are known)

HOB': ﬁ1=ﬁ2 (Aésuming that 0, = 0, = O, where o i® unknown)

Hog @ By = B2

Hgy 3 bi = f3, and o4 = O,

They derived the L.R;T. bamead uﬂ +he smallest obeervations of
the random samples from pdf given by (1;3.1) with k = 2.
These likelihood ratio tests can be reduced to equivalent
tests which are distributed as xz por F distribution, though
the authors did not succeed in reducing the L.R.T. for the
hypothesis Hg,- to some known criteria as F or xz digtribu-

tion.

Marcus (41976) was interested in testing

1
X

. Hy ! ﬂ1'= By = ... = By
’Egainst
- Hi 1 ﬂi < ﬁz £ ..., = ﬁk with at 1least one strict
, inequality.
vhere o; = o© ¥ i=1,2,... k.

By using Monte Carlo Sampling, a comparison among the
pouéfffunctiona of four test statistic is made. These test

staﬁiétics are the likelihood ratio statistic A,

Kolmogorov-Smirnov statistic (D*>, and other two statistics
U, Q which are ocumulative funct.ions of oxrdered uniform
deviates and their logarithms respectively. He concluded that

if the inequalities are among the relatively small means then

L

1 . . o -0 -
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the A and Q tests are more powerful than the other tLwo,
whereas if the inequalities are among the relatively high

meané then the reverse is true,

IP.B.' Nagarsenker and B.N. Nagarsenker (1986) were
interested in testing the null hypothesis
Hy: 04 = o053 = ... = 0, the By’s Ci=1,2,...,k> are
unspecified against the general alternatives.

" In case of two exponential populatieons, the digtribution
of the L.R, statistic for testing H,, has been considered by
Paulson €1941), Epstein and Tsao €1983», and others. For more
than two exponential populations, no exact digtribution of
the L.R. statistic ié available in a closed form. They obtai-
ned the exact distribution of the L.RE. statiétic for testing
H0 in a computational form for the case of equal sample

sizes. This distribution was used to compute the exact s=ig-

nificance points of the test statistic.

Now; since the normal and exponential populations belong
to the exponential family of distributions, we thought that
it is interesting to present some of the previous work
related to the testing problem in case of multivariate normal

distribution.

Consider the following testing problem for multivariate

normal distribution with mean vector n; n'a<n1,n2,---,np> and

- 10 —
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identity covariance matrix.

.“0 1 (ni,...,np) w (0,,..,0

against 1.3.2>
Hy @ Cng,een,mpd &V* N\ €C0,00>

where V* = {Fr,ﬁ}} t r20, 05 3= ﬂ*} iz a closed convex
cone with angle ﬁ“ such that ﬁ* gat.isfies either ﬁ* = 2 or
0 = ﬂ* = T

Bartholomew, Kudo, Nuegch, Shirahata, Marden,
Al-Rawwash, and others have congidered the testing problem

given by 1.3, 2.

Bartholomew (198%a,b) was interested in testing
HD 1My By T ... F Tk
agaihat
) Hitniznzz... Bnk
He obtained the L.R.T. and its null distribution, also, he
showed that the L.R. statistic has distribution which depends

on the x2-distribution and certain probabilities.

Bartholomew €1961) obtained the power function of the
L.R.T. under some special cases. He cbserved through his

computations that the L.R.T. for the restricted alternative

dominates the usual xz-tesh in terms of the power functjion.

Kudo €1963) is concerned with a testing problem of the
form

-

- L4 -
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H, : Ay = 0 Ci=t. .., kD against Hy @ ny = 0 for i=1,2,....k
where the inequality is strict for at least one value of 1.
He derived the likelihood ratio eriterion and. obtained ite

null distribution.

Al-Rawwash €1986)> partially proved a con jecture about
the L.R.T.. The coﬂjecture says'that the more restrictions
put on the alternative space, the power function of L.R.T.
increases. Particularly, in a bivariate normal digtribution,
he showed that the L.R.T. ¢V1 dominate the L. R.T. ¢V2’ Vlcvz

where ¢y iz the L.R.T. for testing

H, : (ni,nz) = €0,0> vs. Hy (ny,ny) € vV N ACD,00)

He proved the above conjecture for the following cases:

1. v, = &2, v, = ®2, where B' = 10,
¥ X + 3 7
2. Vi =R xR, Vy = R2
3, v, = ®R*2, v, = R x R

In this,thesis, we derive the L.R.T., M.D.L.RT, and
Modified L.R.T. nf the testing problem €1.4.3>. In addition,
we obtain their power functions. Also, we observe, from the
tables of the power functinna, gome properties of thage tests

such ae admisibility , symmetry, and monotonicity..

- 12 -
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1.4 Summary of the thesis

This thesis consiste of four chapters. In the first
chapter, we give the statistical model and the testing
problem under consideration. Furthermore, we present —some
mathematical preliminaries and review of important literature
related to our testing problem.

'In the second chapter, we derive the L.R.T., M.D.L.R.T.
and Modified L.R.T. and their power functions under tLwo types
of alternative spaces., The first is the whole parameter
space and the mecond is a cone with vertex at (1,1> and angle
ﬁ* s n / 2,

In the third chapter, we pfesent some properties of
these tests such as admigsibility, monotonicity and symmetry
of the power functions, for the two Lypes of alternative
BEpaces,

In the last chapter, we give some numerical comparison
between the different. power functions of the L.R.T.,

M.D.L.R.T. and Modifjied L.R.T. for cone angles 9*= 6,

n’d, /3, n/2 and 2n,
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CHAPTER THWO
DERIVATION OF THE L.R.T., M.D.L.R.T. AND MODIFIED L.R.T.

AND THEIR POWER FUNCTIONS

In the following two sections, we derive the L.R.T.,
M.D.L.R.T. and Modified L.R.T. and their power functionsz for
the testing problem given by (1.1%1.2).

2.1 Derivation of the L.R.T., M.D.L.R.T and Modified L.R.T.

Consider the bivariate independent exponent.ial
distribution with parameters (8,,0,J. It ig demired to test
the following problem:

PCV) Hy 1 €04,0,3 = (1,1

LY

againet. C2.1.1D

Hyi€0,,0,) & V N\ {C1,10)

where V is come closed convex cone, which has the form

vﬁ* = {(x,y) . x 21, 1<y <bx-1> +1 , b= tang" }

such that 0 5 ﬁ* < n/2 or ﬁ*= 2r. For simplicity we use V,
for a cone with angle B*e <0, ns2) and V2 for the cone with
angle 2n.

In order to derive the M.D.L.R.T.,, we obtain first the

M.D.E. (61,62) restricted to the cone V4 which 1s the

alternative space of the testing problem (2.1.1).

Lemwa €2.1.1) The N.D.E. of (9,,0, regbricted to the ocone

vy i8 given by

- 14 -
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Cx, vy : if (x,y> e Vy

1,1> if e, y) & vg
€6, ,6,= €2.1.2>
2 2
x+by-b+b“.  bx+b“y-b+1 5 ip ¢ , vt
» e b4 ]
bZ+1 b2+1 'Y 1

L (x,1) if x,y> e Vy

where b = tan g* and V,, V], V], V] are as illustrated in

Figure 2-1.

Proof:

" ”~

To obtain the M.D.E, (61,62) restricted to V,, partition the
space R? into 4 regions Vys VI, VT snd V; which are

illustrated in Figure 2-1:
1) J\

Ny

A -

N

%
Figure 2Z2-1 ol

x.

F

Now , if Cx,ydeV, then €8,,6,> = (x,y>. But if (x,y> « V,,
then the M.D.E. of (6,,08,) will be the projection of C(x,y)

on the boundary of V,. ¥We have 3 cases:

1. For (i,y) € VI, the M.D.E., is in the =et

{Fu,w) i u = bCw—12+1 , uzt, wzi}

Thus 92 = b(ei—i} + 1

www.manaraa.com



Let D be the distance between (x,y) and the point (6,,8,).

t.e., D? = x-0,52 + (y-0,?

x-0,>% + Cy=bO,~1+b>2

a)z
so that, = - 2 x-6,) ~ 2 b Cy-bO,-1i+b) = 0
04
» (x-9,) + b Cy—bO;~1+b> = 0
> Cx+byd ~ 0,(b2+1> + b® +b = 0
Thie gives,
2 x+by-b+b?
6, = v
and 92 = b 91 - b + 1

b{x+by—b+b2>
= - b+ 1
b% + 1
bx+b2y-b+1

b4 + 1

” ~~

2, For (x,y> € V], then €6,,6,> = (1,1

3. for (x,y) e V;, the M.D.E. im in the set {Cu,1> : u 2 1),

It is a msubset of the boundary of the cone V,. So tbhat

(61,32) = (x,1) is the closest point in this set to (x,y).

This completes the préof.

Now, we obtain the M.D.L.R.T.

- 18 '_
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Theoremw (2.1.2)

Consider the bivariate independent. exponential
distribution with parameters (0,,6,). The M.D.L.R.T. ¢V1 ie
of the form

o A= ky
by = { €2.1.3

1
1 A< ky

where k1 im a constant based on the level of wsignificance,

and
. —x-y+2
Xye if (x,y> € Vy
1 if ¢x,y> € V§
A=A
x+by-—b+b2 -xt x+b2y—b+1 —-yS +
e ———— 2 if x,y) € Vy
b%+1 b%+1
~x+1 -
X e ' iff (x,¥y> & V1
.
such that
x+by-b—1 A
t = ——
x+by-b+b
bx+bZy—b~b?
"B = I o (Z.i.")
bx+h“y—-b+1
b = tan ﬁ*

and Vi, Vg, VI, VI are ag illustrated earliev in Figure 2-1.

Proof':

The likelihood ratio function A is given by

- 4T -
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A= (2.1.85)
~ N
P A
Fa
049,
b 1 - 1
= 61 exp| —x [ 1— — ] 92 exp{ ~y [ 1- _ ]
. 94 o,

LY e

where 6,,8,) is the M.D.E. of (84,0, restricted to the cone
V1.
By using Lemma €2.1.1), we can easily get A for the

cases of V,, V7, and V{. For the case of VI, we proceed as

follows:’
x+by-b+b? ) b2 +1 bx+b%y-h+1
A= = expl=x |1 = ——— . -y
bZ+1 I x+by-b+b b + 1
- b2 +1
] bx+b“y—b+1
2 2
x+bhy—b+b -xt Xx+b“y-b+1 -ys
= e e
b2+1 b% + 1

where t.,5 are given in ¢2.1.4). This ends the proof of
Theorem €2.1.2),
Before. deriving the L.R.T. we obtain the M.L.E. restricted

to the cone V, with angle ﬁ*e «,n 2.

Lomma €2.1.32 The M.L.E. of (91,0?) restricted to the cone

V1 iz given by
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Cx,y) if (x,y) € Vg
1,12 Af Cx,y> € V§
(61 » éz) .y
¢d , bCd-1D+ 1) if Cx,y> € V;
| (x,12 if (x,y) € VI

where b = tan 3" and d is a function of (x,y,b> which is a

solution of the following cubic equation in 61 with 912 1.

2

2b2913+912[3b(1~b)—bzxﬂby]+91[(1*b)2—2b(1~b)x]~(1*b) X = 0

Proof’:

Partition the sample space into 4 regions V., VI, v{] and
V; as illustrated in Figure 2-1.

Since the function

o r<91,92>=-g%95 expC-x/6,-y/0,)
has maximum point at (91,92)=(x,y) and it is decreasing away
from (x,y>, then if C(x,y) & V,, the maximum point of £(@,,6,)
for (91,92) 5 V1 will be on the boundary of the cone V; .

Now, for (x,y> € V,, it is obvious that (8, 6,)=C(x, y).

Also , if Cx,yde V] then (84, 6,0 = (x,1> . It is left to

obtain the M.L.E. for the cases (x,y)eV1+ and C(x,y>eVy”. For

the case that (X,yle V1+, the M.L.E. is located at. the upper

boundary of V,, so
6, = b €6y - 1> + 1

Thus, we want to find the maximum value of the function
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1
£€o,) = exp[ ~x/8, - y/ [bCO~13+1] ]
8,1bCO,~15+1]

for 91>1. But.,

Ln gCOD = —Lfn O ~ %0, — Ln (bCO,-1>+1> ~ y/ [bCO ~1)+1]

So that,,
a o 1 b X by
— fn €0, = = — -~ + + =0
29, 1 6, blo,-1>+1 87 [bCO~13+11°

Thie gives
2263 + bC1-b>6% + 2b0Zc1-b> + 0,C1-b>? = bPOTx + C1-b)7x
+ 2b0,(1-bdx + by6y
which is equivalent to
hco,d> = 0, (2.1.62

whera,

h(91)=2b2913+912[3b(1—b)-bzx—by]+91[(1*b)2—2b(1*b)x]—(1-b)2x
At 91=1 ,we get
h<1I=bC(1-ydI+(4i-x].
Since we are treating the case (x,y)eV1+, then
b(i~y>» < —-C(1-x> ,
therefore, h(1) < 0.
Al=o

1im  (hCo,>/03> = 2b?
64 =y @
1
which is greater than 0 . This implies that h(«> > 0. So, we
can say that h(6,) takes both negative and positive values

on the range ¢ 1, o . Also, since h(@,> is continuous on

this range, it must has a root which is greater than 1
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Let the root of equation (2.1.6) be denoted by "d”,
i.e., 61 =d , say
Therefore ©, = bCd-1)+1 .
For Cx,y) = Vg , we have two camses that either (51, 62)

is at the lower boundary of the cone V, i.e , 6, = 1 or

(61, 62) is at the upper boundary of the cone V, 1i.e,

Gzﬂ b(91~1)+1 s

For the first. case we have to minimize

f(91)=(1/91}exp(—x/91—y).

But, : Ln £CO, 0= — InCO, )~ x/8y ~y
3 nfeO 4y

x & Inf' (8,7
Since x<1 and ©, > 1, then < 1, therefore, < 0.
1 %1 a9,

This implies that f(6,) is a decreasing function for €, > 1.
Thus its maximum will be at 6,=1. Therefore the M.L.E.

By, 65 = (1, 1> .

In the second case the M.L.E. will be a solution of the cubic
equation given by (2.1.6), In this case, we have to show
that this cubic equation has no roots for 6, > 1, which is
equivalent. to showing that

h(6,> >0 for all 6,>1,
where hc91) is given by (2.1.6>. To show this, it is enough
to show that

Min o h€6> > 0  for & > 1
(x,ylrevV,
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It, can be seen that the minim.: is at C(x 3=C(1,1), Therefore,
it is enough to show thal the function h,(€,> > 0 for 01>1,
where hy is given by

= 2b203+0%14 2b-4b% 1 +

x=1,y=1. [
C1-bICi-3b20 —C1-b>2,

h1(91) = h(Gi)

But«hicei)'can be written as follows,
= 2 3_ 2 -y _— z_ —
h1<91> b (291 491 +10, 1>+bC206, 491+2)+91 1,
which can be written as,

e (6.-11 [b2c0. 240, 12 Q
hi(Gi) [91 11 Ib (91 +(01 1272 + 2b(61 1> + 11,

Notice that for 91>1, hi(ei) > 0, This implies that the
function g(Oi), is decreaging for 61>1 and its maximum will
be at 64= 1 and so0 92 = 1, therefore we get thal the N ULE.

(&, 8, = (1, 13 . This emis the prv .

Now, we derive the L.k. ..

Theorem (2.1.42

Congider the bivariate independent exponential
distribution with parameters (6,,6,). For the testing problem
¢2.1.1> with angle g%eco, n/2> the L.R.T. ¢§j is of the form
| K AT xRy h
= €2.1.7>

”

by
1 1 A < kg

where ki is a constant based on the level of significance,

and
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- —y=-y+2

Xye if (x,y) V1
1 if Cx,y> e Vj
A=
QCx,y) if ¢x,y> €V,
—x+1 -
X e it O, y) € Vy
where

C > d - b(d—-12>+1 bCa-1)
X, = exp =X | -1+ exp |- '
e,y P d il [b(d—i)u]

and d is given in Lemma €2.1.3).

Froof:

The likelihood ratio statistics A" is given by

- 1 - 1
AT =0, ex —x[ 1= ] 9, ex —y[ 1—— ]
‘ 1 P[ . 91 ] 2 P[ 92

where €8,,6,) is the M.L.E. of (9,,05> in the cone V,.
using Lemma €2.1.3), we can easily get. A" for the ocases

Vo V? and V{. For the case VI, we have

) -1 b(d-1>
AT =d exp|~x |—— bCd-12+1 exp |-y
d b{d—-1>+1

= QCx,¥Y .

This ends the proof,

By

There iz one more test that will be considered in this

chapter which is of the L.R.T. form except for its value in

the cone Vy, we will call such test the Modified L.R.T., it s

ziven by

- 23 -
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0 AT =z ki'
¢Q; = C2.1.8>
1 ATT < ki'

where k;  is a constant based on the level of significance,

and
- ~X-y+2
xye if (x,y2 e V;
1 if Cx,y> e V]
A= X
..'..
y + g + G, if (x,y> €V,
—x+1 ' —
| X e if €x,y> e Vg

where C, is chosen so that the line y+r/b+C, = kg° intersect
the curve x y e X" Y*2 at  the point (x,,¥,> which is the
intersection between the curve and the line y = b{x-1)+1

Now, we show that the M.L.E. coioncide with M.D.E, for

*

3
Lemma €2.4.5) For g% = n/4 and n/2, the M.L.E. of (0,,6,

=g/ 4, and v ~ 2,

coincide with M.D.E. of (6,,6,).
Proof':

¢1> For g* = n ~ 4, the H.D.E. of €0,,8,) given by

-

(x,y) if (x,y) € Vq
i,1> | if (x,y> € V§
(51,é2>=4 2.1.™
cfgi , fgi) if x,y) « VI
BRCEE 5 - if (x,y) e V]
‘ - 24 -
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PN x""’y
Also, the M.L.E. of (6,,6,) as given by (2.1.9>, where 91=—§m

is a molution of the following cubic equation:

63 + 62 [-x/2 - y/21 = 0O

¢2> For " = n ~ 2, the M.D.E. of (0,,0,) given by

»

Cx,y) if Cx,y) e V1
€1,1) if Cx,y) € vg
8, ,0,)= €2.1.10)
C1,y> if (x,y> € vy
| x,1) if (x,y> & V)

Also, the M.L.E. of (61,92) as defined by (2.1.10>, where
<§1;62) = (1,y> is the maximum point when x < 1, ¥ > 1.
Using Lemma €2.1,85), we show that, for the cases ﬁ*mn/4, antd

ﬁ*=n/2, the three tests are equivalent.

Theorem (2.1.06>

The three tests ¢v1, ¢Q1, ¢;i coincide for the case ° =
n /74 and w / 2.
Proof: We observe that, the only difference ig for the values
in the cone VI. For the case ﬁ* =n ~/ 4. It can be seen  that

for the test ¢y . if ¢x,y> € V;, we have

. x+y 2

A= —5—] exp(—x-y+2> < Kk
which is equivalent to x + y < k™.

Also, for Lhe test ¢§1, if (x,y) € VI, we have
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x+y 2

AT = L?r] exp(-x-y+2> < k
. which is equivalent to x+y < K*.
Furthermore for (x,y> € VI, we have A" = x + y < k™, which
is equivalent to ¢V1 and ¢Gi.
Now, for the case ﬁ* = 5 / 2, for the test ¢V1, if x,vy) VI
ne get

A=Yy exp(—y + 1) < k
which is equivalent to y < c*.
For the test ¢§1, if (x,y) € VI, we get

A=y expC-y + 1) < k
which is equivalent to y (< c*.
And, for the test ¢{,;, if Cx,y> € Vi then

A =y < a*

which is equivalent. to ¢v1, ¢61.

Theorem (2.1.7)

Consider the bivariate independent exponential
_distfibutiun with parameters cﬁ1,92>._ For the testing
problem ¢2.1.1> with cone V,, the whole space,the L.R.T. ¢V?
has the form ‘
o At 2k,
"3 T 1 A" <k,

where

—X-y+2
A" = % Yy e
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and k, ie a constant determined by the level of significance.

Proaof.

The likelihood ratib function A" is given by

a
A"
1 X0~y O
sup e 1 2
€0,,0,06V, 6,9,
. 1 YA 1
= eiexp —x[iw-az] ezexp fy[im-g;]

where (éi,éz) iz the M.L.E. of (91,92) corresponding to the
positive gquadrant space.

It. is obvious that the M.L.E. of (91,923 will be (x,y>, tLhis
implies that

—Ry+ 2

A*=xye

This ends of the proof.

Notice that the M.D.L.R.T. is the mame as the L.R.T. for

unrestricted alternative.

2.2 Derivation of the Power Functionm

In this section, the power functions for the L.R.T.,
M.D.L.R.T. and the Modified L.R.T corresponding to the cones

Vi and Vz are derived,

Theorem (Z2.2.1)

Consider the Modified L.R.T. given by €2.1.8>. For any

alternative (6,,6,) Vi, let €A, be the transformation of
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(91,92} given by

—~8,—-0.,+2
A=6, 0, e 172
and # = arc tan|———

Then the power function of the Modified L.R.T. as a funotion

of €A, is given by

b92—91

B,€A, 3 = HiCb,0,> + e
—-A/0, +A/CbO.) -G, /8 -1./0
.[1—e 1 2 ] e 41 [1 - e 2] €2.2.1>

1 Ny ol (ys6.) Cyd> 0,

—-{y ~Cw,Cyd/
where H:(b,ei) B I e 2 1 1 dy ,
) o, A

A = b(b+c—-1) / (b2+1> 1is the interssction point between

: ~Cy_. .1
y=c-(x/b) and y = h(x-13+1, G, is solution of G,e =ky e ,

such that G, > 1, 6, = (6,-1> tanB + 1; 0 < 3 = " and w (y)
= 1 [(ki’/y)eyﬂzj such that £Cx) = xe

Proofl:

For fixed A, 91,92 are related am
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-0 A e,—2
91 e 1a e 2
%
and C2.2.20
3 = arc tan[
From €2.2.2> we have
-91 A (Gi—l)tanﬁ-i
61 e = e
1+(61—1) tanf3
this implies that.:
(91—1)(1+tanﬁ)
o4+ 61(91—1) tanf3 = A e €2.2.3>

il.e., 94 = function of CA,3

I

a(p, A) |, say.

Ve can represent (2.2.2> graphically ase follows:

B
£ \,(_0"‘\*
.
\ i
' (e 0 -0 8,2
t) 6\ Q ‘e A 2
O, gl . 61
® 'E
® :
k"i‘\ o G"" %
- 1
b0 ' ch
Figure 2-2

But, the power function in terms of 6, €, iz given by

]
E ¢’f
94,05 "Vyq €
are

where By; i=1,...,08

shown

in the graph below, and

P ¢.) ig the pf under the dengity C1.1.1).
01,92 .
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I Y

(2,0} A e vy

Figure 2-3
Sketch of the acceptance region of the Modified L.R.T. ¢Q;

Now ,
A b(x-1>+1
Po, o.CBy? = J I — L dy dx
1°¥2 , 0,
11
-1/6,-1-9 —-A-8,~-1/0 6
s VOO | AT O2 T2
' O, +b9y
E—Afeiwtb(A-1)+11/92_ 9, 9—1/61-1/92
92+b61
Also,
b(A-13+1 w,C(yD
P (B> = — — dx dy
0,,06 2
172 =7 0,
1 A
-A76,~1/0 ~A/0,~[bCA-1>+11/06
= e 1 2 e 1 2~ wich, 00>
bCA-1)+1 o
1 ~y O~ LyI O
where n;(b,91> R e Y772 1 dy
92 .

- 30 -
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1 C—x-b

i -X704 1 -y/8,
PeecBE,)uJ'J' e —e dy dx
1:¥2 61 62
0O 1
-1/0 -1/6 bo ~C/0 ~1/6,+1/ChO.,>
e 2[1_e 1]_, 2 . 3[9 1 2 _1]
04 1
P@ o (84) = I I —_— —_— dy dx
1* 72 91 62 .
0 O
0,76 —-1./6 -0,76,—-1-0
and
A C—(x/b>
P (Bg) = _— — € dy dx
0,,6 8
1°72 91 92
1 b(x~1>+1
. 0,+b0y
. bez E*G/OZ[%"A/91+A/(b92)” 9—1/91+1/(b92)]

This implies that the power function is given hy (2.2.1).
This ends the proof.
For the speclal case that ﬁ*un/z, it is easily seen that:

bez

, bCA-1>+1, A/b, and A tend to 1, G, 0, and 1,

respectively, as b goes to infinity. Also, the value of Q will

be equal to G4. Therefore the power function reduces Lo

- 31 -
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c
1 JF ~y/1CO 1D tana+11~n,Cy) /0,
2

(0;-1>tanp+l o

dy

B,CA, P =

i-e C2.2.4>

~C, /1 (8, ~1>tanp+1]  —C /0
ro 047101 A1l O 1[

—1/[(91*1)tanﬁ+1]]

Theorem (2.2.3)

Conmider the L.R.T. given by Theorem C2.1.4>. For any
(91,62) & Vi. Let CA,3) be the transformation of (91,92) given
by €2.2.23. Then the power function of the L.R.T. in terms of

CA,3 is given by

-1,0 -G, /0, —1,/0
B AR = e + e 2 471 2

Gi h(x-1)+1
- J. I ......._e e — B " dy dx
o
1 1 1 2
GZ hi{x-12>+1

1 -x/0 1 -y/0
N - J I ; _— 1 e Y72 dx dy 2.2.8)
1 9 94 92

where G4, G, are two curves defined by x e X = (ki/y> oY 2
and QCx,y> = ki, respectively.

Proof:

Pover = Ecg_ .5 #7, = 1 Ep(Ai) + peAy + pcA3>]

where Ai’s ¢i =1, 2, 3 are shown in figure 2-4.

Now,
1 —x/91 1 -y/B?
pCAd = j I —e — % dy dx
o, o,
o o !
~g; /0 ~1./0 G, /0,~1/0
aq - St 1%, OO
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Figure 2-4

Sketch of the acceptance region of the L.R.T. ¢»{,’1.

qy h{x—-1>+1
p(Az) = J I _— —— dy dx
T 1 91 o

' GZ b{x~1)+1

and p(AS) = I I _6- 2] —-é—- e
1 0 1 2

This ends the proof.

Notice that the power function of M.D.L.R.T. has the same

form as (2, 2.8) except Gz is the curve defined by

x+by-—b+b2 -xt x+b2y-b+1 -ys
———| © e =k
b“+1

b%+1
where b, t and s are defined by (2.1.4).

Theorem (2.2, 42

Congider the L.R.T. givan by Theorem (2.1.6). For any

(0,,0,3€V,, the power function is given by:
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H
1

B8,(0,,0,3 = 1 + e + . e dy
24
1,0.,~¢2-C>* 0 1 t s (x>70
- -2 -¥ - (XD
- e 2 1 1, - j e 1 "3 2 gx
i _ +
2 Gi)
62 +
(2*01) C2.2.62
where
-1 y-2 -1 k —-X -4 k -y
w,(yd=r 2 e , Wglxd=r —2 e , Wolyd=f —2 e
2—xX 2=y
such that f{x) = x e and H = max(H,0)
Proof':

4
Power = E ¢ =4 - P CR,;>
8,,05 %v, 2 Peoy,00%

i=4

where Ri; i =1,2,3,4 are ag in the following shketch:

I

(s0)

&Y

Figure 2-8
(when C; 5 25

Sketch of the acceptance region of the LRT. ¢V
2
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-
(2’1 ’9) :tnﬁ
o Rt
e .
2-Ci A :;/'
. \\\ f?R3/
(1“‘ 7-"3 / ;/ X
.t

N

Figure 2-¢

¢ ¥When G4 > 2
Sketch of the acceptance region of the LRT. ¢v
, &

Not.ice that,

~1 |2 y—2
under Ri > X = f ;m e E_wz(y) , say

~1 (k2 ¥Y—2)
under R, , 2-x = f - »x = 2 ~ ws(yd
2 y 2

[ ka2 Y [ Kk Vv
under Ra , 2=x = 112 ¢ b 2 ~f 1[-—3 e ]

2~y J 2=y
~1{ %2 Y] _ =
and under R, , x = r —— = WoCy?
--y +
-2
where £C2) = 2 e
Now,
c w,lyD
> . A R T T 2 1
R = J I —_— e —— dx dy
1 1 ’
— 38 .
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Also,

P (R,
€9,,0,°%2

P (R
€0,,06,>%3

and

C

.'I 1
~1/0 -1-6 -G, /6 1 ~y/0,~W,(y) O
e 1l% 2_,"% 2]____ j SV %272 1 4y
oz 4

1 wa(x)

1 -%/0 1 -y /0
= I I —— 1 e 2 dy dx
= o,

T PN PSS Py o
e 1. 73 2 dx

“I L -x/0-1/0, 1
9 94

-1/0.,( -¢2-C.>Y 0
2[e C1 1_ .

e

]
]

wi/Gi]

1
1 r -X/9,-W.,(xX>)/0
1 "3 2 dx

" e, °
1 cz-gp*
" .

= g

1 '
1 X0 ~Wa(X) /6
P N I e 1 73 2 dx
(2

1 % oy
€2-C;>

1 1 ,
I 1 ~x@, 1 -y/®

+

- +
€2-6,>" 2,0y

+

= g e

1 +
4 ~y/0,~(2-%,(y¥> /0O
F — e 2 2 1 dy

1]
2 ¢2-ap*

- 36 -
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1 F,Cy)

1 -x04 1 -y/a,
Peo,,0,0Re> = I I — e _— dx dy

P o.
c2-a,>* 1 2

i

-1/91—<2-01>+/92 -1/6,~1/0,,

= & e

1
1 ~y /0~ W, Cy) /O
. J e Yy 957y L gy
a
2 cz-cp*

S0, the power function in terms of (91,92) ig given by:

-1,0,-¢2-C, %0 —1,/0,~C, /0
8,00,,0,0 = 1 — e 17€27C4 146 L

o 1
1
;| -y/0,~w,Ly¥2 /0 1 -X/0, =¥ (X)) O
. I e 27%2 1 gy ¢ — I o 17¥3 2 gy
e )
23 1 cz-apt
1 ~y /O~ (DO .y /0, —C2~H, Y)Y 0
+ e Y V27 Y2 1 _ V%2 2 1 ag
)
v 2 ¢2-c >t

The power function given by (2.2.6) can be written in other
forms as follows:

i. If the Gi £ 2 then the power function becomes:

“1/0,~C2~Cy 3,0, —1/0,~C, 0
8,0,,0,0=1~e 2 17771, 771 772

1 N e —wcyde
— --w
+ J e Y 027270

1
1 -R/0, ~WL, XD 7O
— I e 173 2 dx
92 .

dy +
o

1

1 2-Cy2

1
1 Y /O =W (YD /O —y /0~ (2%, y)> /0
. o 27%2 1. o 2 2 1

e
2

dy
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ii., If G, > 2 then the power function is given by:

1
-1./0 -y/e —1,/0,~C /0
8,€0,,6,) =1 -¢e 2 - E_J 249y + e 171772
20
y S Cyd 1 © ®
o 2 e DA S g SR, W (XD
N _J‘ e 2772 1 __J‘ 17%3 2
P
2 4 ° %
! FoCy)
1 ~y/ O, (y) /O
e
2 0
1.,6,-C, /0 A /0 Cyd o
~1/6,-C,/ ~y /0 W,y
8.00,,0) =e 1 V72, [ 777272 1 4y
2$91: 9 5
2 4
1 " 1
1 X0 W (XD SO Y O, Cy) O
+......Ie 173 2dx+——I Y79y "2 1")’
94
0 29
This ends the proof.
- 38 -
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CHAPTER THREE
SOME PROPERTIES OF THE

M.D.L.R.T., L.R.T. ARD MODIFIED L.R.T.

3.1 Introduction

This chapter gives some properties of the L.R.TF.,
M.D.L.R.T. and Modified L.R.T. For certain values of g%, it
is shown that some of these tests are admissible tests in the
case of zero—one loss function. In addition, through some
computations, it ie observed that for fixed A, the power

functions of the L.R.T., M.D.L.R.T. and Modified L.R.T. are

monotone in 3 for ﬂ(ﬁ and Bymmet;iu about. E, vhere @3 is
determined by the angle ﬁ* of the cone. Furthermore, we prove
that for the case ﬁ' w /2, the power function has maximum
value at n-4 and two equal minima at O and n/2.

We will mostly concentrate on the Modified L.R.T., for
many reasons: its simplicity to deal with and its closeness
Lo the other two tests. In addition, for some g%, it is
equivalent to the other two tests. Also it has some optimal

properties.

3.2 Admissibility °

‘In this section, we will show that for particular values
of 8%, the L.R.T., M.D.L.R.T. and HModified L.R.T. for the

testing problem given by €1.1.2> have a V-decreasing and

- 3 -~
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convex acceptance region, therefore by Eaton’eg (1.970)

Theorem, these tests are admissible tests for the given case.

Theorem (3.2.1)

Consider the statistical model ¢1.1.1> and the testing
problem (1.1.3>. For ﬁ* = 2 Cwhich is the unrestricted case)

the L.R.T. given by Lemma €2.1.7) is an admissible test’

Proof:

Let A be thé acceptance region of L.R.T. A can be
written as A = (QCx> QCy> = K3} where Q(t> = t et and k" is
some constant,

To show that A is convex, it is enough to show that the curve

given by

. Qx> QCyd = k3

is concave down function for y > 1 and concave up for y < 1.

¥We have
ay yix—-12
i xC1~y2
and
%y y
- = T [2x2y+2x*xz+y2—4yx]
Tx {1-ydox
= —-Z-3-2 [2x(x—j)(y~1)+(x"y?2]
(i-y>*x '

For v > 1, we have the following functioen
£exd = x2(2y-1) + xC2~-dyd + y*

also, £ = 2x(2y-1) + (2-4yd>-

- 40 -
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Let am=2y-1, b= -2a and ¢ = y2
So, x = (4dy-2) / C4y-2) = 1 ,
b2 - 4ac = —4a(y—1)2 <0
Then fCx) has no real root, therefore
f(x> > 0 for all x.

Similary, for v < 1, we get

—fi;— > 0
M
This shows that A is convex. Birnbaum (1988> theorem iwmplies

that the L.R.T., for unrestricted case is an admisgible test.

This ends the proof.

For restricted case with ﬁ*Sn/Z the form of the L.R.T.
has a curve iIn VI which is not easy to show that its concave
down, . especially we have Lo solve a cubic equation and we use
ite solution to get QCx,y> which is defined in Theorem
(2.1.4>. The difficulty 1is to find the derivative 63y/6x2 and
to show that it is negative, therefore the Modified L.R. T, is
used in most casges.

For the Modified L.R.T, we show that it is admirsible for

the case that B* > n’4 and inadmissible for B“(n/4.

Lemwma (3.2.2)

Congider the statistical model (1.1.1> and the testing
" problem (1.1.3>, The Modified L.R.T. has n convex acceptance

region for the cases nr4s3*sn 2,

- 41 -
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Proof':
It is enough to show the following:

C¢1> The curve Gi i concave down function.

(2> The =slope of the tangent line 'L, of the curve G at
(xo,yo} iz less than or equal to the slope of the line La,
where @,, Ly and L, are illustrated in the following figure,

\
'\,‘L Q\k
AW ;Jg’

f’

=
¢

(1.0

ok le -

f'o’,]

b 4
R

. Figure 3~1

Illustration of the curve G1 and the tangent. lines Lj and L?.

The curve 61 has the form:

xe X*ye Y = Ki~ e 2

The equation of the line Ly im
and the equation of the line L, is

y = my (X—Xnd + y,

3y

where My = e and m, = -1 /b
Ix (xo,yo)

- 42 -

www.manaraa.com



. 2
a%y

we want to mhow that the curve G,is concave down or <0

1 %2

But.
ay - xXy=y
ax K—yYN
and
32Y y

- 3 A[x(x~1)(yw1)+x(1~y)2—(x*1)(y~1)—(1—y)2(xw1}+(x~1)2y]
%2 C1-y>9x ;
y

= ——~—-3—2 (=1 Cy=12 (X-y)+X~2yxX+y
C1-y2'x [

2x+yx2+y~2yx]

y 2 2,.2 |
B ey 2Ry 2H-R Y —2yx~2yx]
Ci-yI)™x [

y
= EZ:;;S;Z [ny(x—l)wa(x~1)+(x2+y2—2yx)]

Y 2
= gy 2513 Cy=1D 4Oy ]
(1-yd>©x [

Since‘x>1, yv>1, we get 62y/6x2 ¢ 0. This praves that the
curve G, ls concave down.

Now, we shall show that the slope of the line Ly i less
than the slope of ﬁhe line L,. But the slope of L, is given

by my where
Ay (x0~1)y0

miﬂ—— m

and the slope of L, is given by m, where,

m, = 1~xo’
o1
We want to show that
my < my.
— 43 -
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But. mg — My =
(1~yg2¥%g yo~1
= y -
C1-yd%q [ ¥o™o

No? Yo > 1 and if ﬁ* > nod Lhen Yo > Xg which iwmplies
that m,<m,.

Also we must show that the tangent line of the curve 61
at the point (x4,1) 1s vertical but the slope of the tangent

line at (xi,i) is

ay (x—-13y
M B e—— Bl tstarmbrareiest = m
ax iy, 12 (1-yix (xi,i)

This ends the proof.

Lenna.(3.2.3)

Under the condition of Lemma €3,2.2), the Modified L.R.T.
has a V~decreasing acceptance region.

Proof:

We want to show that the acceptance region is a
decreasing set with respect to the cone V. It is enough to
show that, the dual cone V2 at any point on the boundary of
the acceptance region is a subset of the acceptance region,

The boundary of the acceptance region conzists of the

lines Lo, Ly and the curve G,. See Figure 22,

— 44 -
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It is obvious that the dual cone at. any point on the
boundary of the lines L, and Lg is a subset. of the acceptance
region. It is left to show that the dual cone V" at any point
(xl,yi} on the curve Gi ie a subget of the acceptance region.
This reduces to show that:

1. Thé qurve G1 ig a decreasing function with respect to x,
which was proved by Lemma (3.2.2).

2. Let the limne L, intersect the curve G4 in Lwo points
Cx7,yD and (x”7, y'7> with x'< x”7, ¥We must show that the
slope of L, is less than the slope L,. By the Mean Value
Theorem there exists a point Ce(x”,x” ") such that

3y _ yex> ~ yx' D

ax x=C x -~ x

- o

where y(x)> is the height of the curve G, at x. But. we have

shown in Lemma ¢3.2.2) that the curve 61 is concave down

which implies that is a decreasing funclion of x.

Therefore,

- a8 -
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dy

ax

dy
<

E -
X=X, ax

x=Q
which implies that the slope m, of the line L, 1=z less t.han

the slope m, of the line L, where

M4

=

vle sle

Mma

This ends the proof.

Theorem (3.2.4)

Under the condition of Lemma €3.2.2), the Modified L.R.T. is

an admissible test.

Proof:

Since the Modified L.R.T. has a convex and V-decreasing
acceptance region for the case n/4 < ﬁ* % ns2, then by
Eaton’s <1970) Theorem, we get that the Modified L.R.T. is an

admissible test.

Corollary €3.2.05)

Consider the statistical model (1.1.1) and the testing problem
¢1.1.3>. The M.D.L.R.T. has a convex acceptance region,

proof':

It i= enough to show that
(1), The two curves G1 and G'2 are concave dawn Tfunctions

where 61,62 are shown in the Figure 2-4 .
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In lemma €3,2.2), we have shown that the curve G, is concave
down function .
Now ,we want to show that the curve G2 i a concave down
function in x.
.The curve G, has the following equat.ion

A B exp(-xt-ys) = k,

where ¢ = 14 — (174 @ = 1 ~ C(1/8)

A = | Xtby-b-b and B = |BXF Dby b+1
b?+1 bZ%+1

¥We can eagily get. that :

) |
Sysox=—1sb [ BATLITDAL F | oy - (3.2.0)
ACA=15>-D/CbhZ+1)

where D = B+bA—xB/A—bAy)B
A mathematical proof for Qﬁg— to he negative is not
ox
available, however we show, through some numerical
computations that dy~8x is negative, and dy/@x is decreasing.
Table €1) in the Appendix shows these computations for the

cases 3" = 30°, 60° and 78°. Now consider the point (x >

o' Yo
which is the intersection point between the curve G, and the
line y=b(x-1)>+1, then the slope of the tangent, line for the
curve G at this point is equal to

m1=[(x0—1)y°]/[(1—yo)xol
Notice that the point (x,,¥y.2 is aleso the paint of
intersection between the line y=b(x-1)>41 and the curve 4G,

then the slope of the tangent line for the curve G, at this

point. will be equal to m, which is given by (3.2.1)

- 47 -
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Now ,we want to show that the m’smz'. Numerically we get the

following results

at. ™= 60 we have m = -, 8058, m= -.4650

1

at @™%= 76 we have m = -.5848, m,= —.1490

i

at g™= 30 we have m =-1.2400, m = ~2.1490
From these numerical results w; may conjecture that the
M.D.L.R. T, has a convex acceptance region for case that

3 na

3.3 Monotonicity and symmelry properties

In this section, we study some properties of the power
function of the L.R.T. for the value B* = ps/2, which is, in
this case, equal to the power functions of the MNodified
L.R.T. and M.D.L.R.T. In addition, we prove, for this case,
that Lhe.power fanctions of thesme tests are sgsymmetric about
n’/4. Also, they have maximum at 3 = n/2 and two equal minima
at = 0 and 3 = n/2. Furtherwore, for some other cases of n*

and through some numerical computations given in section 3.4,

-it, is ohserved that for fixed A, the power function of some
test, iz monotone in 3 for @ < 3, and it is symmetric about 3,

where 3 is determined by the angle ﬂ* of" the cone.

Theorem €¢3.3.1>

L

For the case that ﬁ* = n/2, and for fixed A, the power

function ﬁ1(A,ﬁ) is symmetric in 3 about 3 = w4, i.e.,

mi(A,n/2~ﬂ) = B,CA, (3 for 3 s nd

- 48 -
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Proof':

The power function ﬂi(ﬁ,ﬁ) is given by (2.2.4). Firsi,

a

4
1 y w <y c ~
B,CA,n/2-> = — | expf- — - 1 dy + exp|~ —= [1_,@ 1/92]
o e o e
2y 2 1 2
C
+ exp[— _i]
9
n
where 9., = (6,-1dtan(~- - 3 + 1
2 1 > .

and w1(y) ag defined earlier.
Since the curve 61 given by

is symmetric about 6, = ©,. (see Figure 3-3)

o ©? 0-0,
:fa (9,91)
(A
_(op} _%1
Figure 3-3

Illustration of (91,92) related with A = 61 92 exp(~91~92+2)

Then,

Thus,

Y =
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91(A,n/27ﬁ) = $,CA, 3 for 3 s n/d

This ends the proof.

Theoxrem (3.3.2)

For the case ﬁ* = /2, the power function has a maximum
point. at 3 = n-d.
Proof':

The power function is given by
1 -x70; 1 -y-0
B(O,,0,) = 1—I I me L __e” 2 ax dy
% 92
A
This can be written in term of (A;3 as
—x/91 :1 n—y/[(91~1>tana+1]
C8;-1)tanf3+1

1
nA(ﬁ)mﬂifﬂ,ﬁ>=1~J] EIE dxdy
A

¥here (A, are related to (8,,6,) am in €2.2.2).

and the region A is tllurtrated in Figure 3-4,

Figure 3-4

Sketch of the acceptance reglon of L.R.T. ¢y
: 1

Now,
AN 1 %0, -y/LC6,~1)tans+1]
29 - JI - 1 TY/LO H*Cx,y,0,,3> dxdy
1
A

(3.3.12
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vhere

H*Cx,y,0,,3 = O eco 3 1¢1-ygco >+[Ze1 : o,
> ¥, 1’ [“"a_(; g 1’. ] yg 1:ﬂ T][;';"f ""6‘1'-‘] & 1,(3 »

£CO,,B> = 1 / (O ~1dtanB + 11
a 2 2 9y
— €0, = -g%Co,,® [(91—1) secZ3 + —L tan aﬂ
3 an
and

99, (1-91359033 cei_ﬂe(91"1)c1+tanﬁ>)

a3 1+(291—1)tanﬁ ~ ACL+tan@m elOg~1)(1+tan

94
Now, at 3 = 74 , we get Eﬁm = (1-942

Therefore

" !
angCP “J]J ~%/0,-y/1€0,~13tan+1) [ [2€0,-1>+(1-0,>1 O -y
an o 67 o,
1-6, x-6y 1

‘ 8% 8 9
1 ~x/04-y/1(0,~13tan+1] 1
~[ls=

+

dx dy

—gl- (61 1)(91~y)+(1 91)(x—91)]dxdy

94 oy
A
C1-6,) -%/0,-y/1 (0, —12tan@+11]
-——zé—-J]‘ 1 1 [3—y1l dx dy
%
InpCnsad
since there is symmetry about x = y, e = 0. We can see
: a0

from the table (32 of the power function that at (I=n-4, in

fact, it has maximum. This ends the proof.

Theorem €3,3.3>

For the case ﬂ* n -2, the power function has two Jlocal

minima at. 3 = 0 and 3 = n 2.

- B1 -
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Proof':

Umsing Formula €3.3,1), we have for 3 = 0

99, <1-91)<91-Ae91‘1)
ap 1 - A ea™ "

a
—_ g(6,,3 = (1-9,) and

A =0, o9y 1

Thus

a 1 ~x 04y
— nyC0> = Hst_e [C1-9,5C1~y>1 dx dy

a3

= J j e C1-y> dx dy

91 )
A
Gi L<x)
_€6y4-1) ~%/0,~y ~x/0,~y

it i I I (1wy>dxdy+I J C1-~y)dxdy

®1 1 0

where' G, is the solution of dje”9% = k{"e™! with ¢,;21 and y=
L(x)> iz the ocurve given by the s=solution for y of the

following equation

- k -
y e = 1 %2
b4
Now
a “ o
. -X _
— nA(O)u<91~1>[(1-e'1’91)(cie"c1>+1 e 1 rLexre %7 dx
3
1 |
Oy, .. -2
= (9,-1>[(1~e “17815¢qe” C1)4J mi_-n_ e XC1-17900 4y
1

G
1 e-x(1—1/91)

-2 cx

0, —131C1-e"1C1y ¢, e P4k e
1 1 1 "

- &

- B2 =
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CL  —xc1-
1 ~xC€1-1/0,)

Since 9, > 0, 0 < ki'< 1 and dx > 0
1 1 X
1
th o 0> 0
en —_— =z 0,
| ap 4

Since the range of 3 start from zero, and the derivative is
positive at 3=0 then it bas local minimum of 3=0 gives at 3
= 0, there is a local minimum of the power [unction.

Since the power function is symmetric about 3=n-4, then

it has another minimum puint at A=n/2. This ends the proof.

3.4 Numerical resultls

In thig gection, are given sﬁme numerical computations
to illustfate the properties of £he poﬁer functions for the
different. tests considered earlier, These numerical
compupations are taken for certain cones of angles ﬂ*=2n,
n’2, w3, n/d and n/6. We wshowed that these tests are
coincide for ﬁ*=n/4 and ﬁ*=n/2, therfore when we speak about
tﬁese two cases we deal with one test which is equivalent to
the other tests. The results for these computations are given
in Tables (2),..., (9> of the Appendix. From these tables we

observe the following:

Observation €1)>: For the case that ¥=n/2 and for fixed A,

the povwer function $1CA,ﬁ) ig an increaging function in 3 for

O=s3=n/4 and a decreasing Tunction for n /d<3{n/2.
6nA(B)

To prove this, we take

which equal to the form given

’ ~ B3 -
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by ¢3.3.1). We leave the proof of this observation for

future research.

Ohservation (2>: For Lhe case ﬂ*ﬂnfz and fixed A, the power

function $8,CA,3) is symnetric in 3 about ns4. In other words
ﬁicﬁ,n/z-ﬁ) = ﬁi(A,ﬁ) for 3 < n/4

¥hich was proved in Theorem (3.3, 1)

Observation (33: For the case ﬁ*=n/2 and for fixed A, the

power function $1CA,ﬁ) hae a maximum point at n-4d, and Lwo
equal minima at 3=0, and 3=n~-2, which was partially proved in

Theorem (3, 3.2) and Theorem (3,3.3).

Observation (4): For the case that, Osﬁ*sn/z and for fixed 3,

the power function is a decreasing in A.

Obgervation (8): For the case ﬂ*=n/4, /3 and nr/G6, for

different. A, the power function is an increasing function in

3 for 05353 and a decreasing function for ﬂsﬁsﬁ*, wvhere 3 is
determined by the cone V with angle 3* and varies with 4 .
The following tables give the point 3, the innoreasing

interval and the decreasing interval for all rnases,

- b4 -
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1> For g% n-a
A Symmetric Increasing Decreasing
point interval interval
0.1 30" 10", 391 [39°,48°1
0.3 36° (0%, 361 (36°, 489
0.8 33° [o®,33°]1 [33°, 4671
0.7 30.6° 10°9,30.68°1 [30.6%,48%
0.9 29° [o@, 20" (29°, 48°1

¢2>  For p*= n6

¢ Modefied L.R.T. >

A Symmetric Increasing Decreasing
point. interval interval
1 (0,30°]
.3 22° [0, 227 122°,30°%
" .8 19° 10,19°1 [199,30°1
.7 16° [0,16°) [16°,30°]
e 185.68° [0,18.8%) (15. 5,301

3> For ﬁ*ﬂnfﬁ

Increasing

(M.D.L.R.T.D>

A Symmetric Decreaging
point. interval interval

A [0, 30" —

.3 10,307

. B 26° 10,26 126%,30°1

.7 23° [o,23" 23", 30"

.9 21.8° (0,21, 6% 121.89, 3071

L i A
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4 For o= n 3

(Modefied L.R.T.D

A Symmet.ric Invreasing Decreasing
point interval interval

.1 42° £0,42°1 £429,60°1

.3 40" [0,40°1 140°,60%)

. B aq. g° [0, 38.8%) £3s. 89, 60°1

.7 36° [o, 361 £36°,60°]

.9 35° [0,38°1 (35%,60°1

¢8> For g¥= n3 CM.D.L.R.T.)>

A Symmetric Increasing Decreasing
point interval interval

1 42° [0,42%) 142°, 60°)

.3 3g° (0,38°1 (38°, 601

. B 36° [o,36%) 136", 60”1

7 359 [o,38°1 1387, 60°1

.9 32.8° [0,32.8") (32.87,60"1

—_ B85 -
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CHAPTER FOUR

NYMERICAL COMPARISON

4.1 Introduciion

This chapter is devoted to give rsome numerical compa-
rison between the different. power functions of the L.R.T. the
M.B.L.R.T. and the Modified L.R.T.. These tests coincide at
ﬂ*=§ and g . It is observed that. Lhe power of these tests are

closed to each other. Also, some of the properties presented

in Chapter 3 can be observed.

4.2 Basic Resulis

This section containg a condition for which , +the two
tests ¢1, the Modified L.R.T. and ¢2 the L.R.T. have the same
level of significance which is in turn +the negeggary
condition for one of them to dominates the other . But the
level of mignificance for the test are 91(1,ﬁ) and B <1,
where micn,p> iz the power fuﬁction of the test ¢t

The condition is

BC1,3> = B4, v 3

which is eguivalent to

1

bCA-1)+1 .
—y—w,Cyd —A~[bhCA-1241] b -c —A+AsD
J‘ e dy + e ¥ —— |1-e
b—-1

c 1-q, ot 1 oo !

- - C =1 =¥y—w,(yd> ~1-(2-c “N=W (XD
+ e 4(1—e 1) ~ 1+e 1, J e 2 - e 17, e 3 cdy

1 2-¢,"

r
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1 - + 1 —
—y—(z—wz(y)) ~y~w2<y)
- I e dy + I e dy €4.2.2>
+ +
where b, A, G, C,, H+, wi(y), w2(y), and ﬁz(y) are defined
earlier in section 2.2.

4.3 Compulational Examples

In this section, we get the power for the three tests

" n n "
for five values of {3 which are , , ¥ and 2mn.
6 4 2
e " n "
Now, for = —Z—, -5- , and (= 2n , the tests
M.D.L.R.T., L.R.T. ,and Modified L.R.T. are coincide.
- n w
For 3 = ———and —— we find the power functions of t.he
a (4]

Modified L.R.T. and for the M.D.L.R.T., we observe that the
power function of these tests are clored to each others.
Assume t.hat ¢vi be the modified L.R.T. corresponding for

PCV,D problem for i =1, 2, 3, 4 and 8 where,

PCVO:H 1 (8,05 = (1,1> against H :(6,,0,) = e V; - {01,132
"

and Vy i=1,...,B are closed convex cone with angles -g-,

n 14 {4

and 2r, respectively.

» » »

4 3 2
Note that ¢Vz, ¢V4 and ¢VB are equivalent to MH.D.L.R.T.

and L.R.T.. Let Ki’s are constants based on the level of

gignificance o which is chosen Lo be 0.08G. Notice that we
want. to solve the equations, in K,, which are,

E(i,i) ¢’Vi - .OB rc}‘[‘ i - ]’2,‘:_1,4 _Fil'}l’l. ﬁ

-~ B -~
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. where

Ai < ky

Ay = Ky

where A" ’s (i=1,2,3, and 4) are defined by (2.1.8) based on
» ., “xhy-'-z
the cone angle 37, and Ag- = x ye .
¥e can obtain the constants k;’s (i=1,2,3 and 42>, by
solving the following equations:
a%/2
L
f e dy + e 2+ e 2 1-e"1> =0.08 for i=2
b(A-1D0+1 " :
~y-w Cy2 ~A—[bCA-13+11 b -Gy —A+Asb
I e dy + e T e— e 1-e
' b-1
1 .
~Cy -1
+ e (14— ") = 0,08 for i = 1, 3 and 4
and
1 “g ¢ 1-cz-cot x)
-1-G ~y=w,(yd ~1-C2- XWX
1 + e 8 +J e 2 dy + e 8" . J e 3 dx
g
1 2-Cg
g C2-w,(y3* p W,oCyd
—y-(e—w,yly it A P 4
- I e 27y + J 27 4y = 0.08 for i=8
+ +
(2-Gg> 2-Cgd . €4.3.3
where C;’s be Lhe solution of C1 e 1 ki e such that

Q> 1 =1,

and C:’s are related

2, 3, 4 and 0B

by

[bCA-1)>+11-2

—-A e

Ae = ki

such bLhat.

bCA-1>+1
A = bCh + ¢} — 1> / b+

Ci=1,3)

Also, we can easily obtain the constants ko and kyy

- B -~
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of the M.D.L.R.T. by solving the following equations:
B;<A, (@ = 0.08, i=1, and 3

where B;CA,® is defined by €2.2.8).

1-¢
We get using the relations K, =G,je 2%

for i=1,3,
that K21=0.3030, K23=0.2685, 021=3.¢282, and 023=3.6098.

¥e get the values of ki’s Ci=1,2,3 and 4> are 0. 3269,
0.2013, 0.2649, and 0.2361 respectively. Therefore, " the
values of Gi’a (i=1,2,3 and 4> are 3.3216, 3.4B06, 3.6131 and
3. 7707 respectively. Also, the values of G:’s C(i=1,2,3 and 4>
are 6,0013, 6.1091; 4.8001, and 3.7707 respectively.

Now, since the value of 04 = 3, 7707 then ﬂhe value of CB

must. be greater than 04. Further, since Gy 2> 2 then the

formula ¢4.3.3) can be written as:

1-c. U8 ) ' x> b w0y
-1~ -y=w,Cy -X—Wo(X ~y—W,Cy
e 5 +J e & dy +I e 3 dx +I e 2 dy = 0.08.

1 0 0 €4.3.4>
This equation (4.3.4) obtained from 82(1,1) under the case

that Gg > 2. Thus, we have kg = 0.2132 and Cg = 3.9087.

For further comparison, we deal with the M.D.L.R.T.

under B*= —g~, and —g-. We observed that this tesl is nearly
closed to the Modified L.R.T..

Now, for the L.R.T., ags we mald before, there is some
difficulty to deal with curve G2 which is Q(x,y> = K;. This
curve depend on solution of the cubic equation which is not
easy Lo deal with,

¢

For all the above reasong, we defined two other} tests
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which are called Modified L.R.T. and M.D.L.R.T., which closed
to the L.R.T, under certain values. From Tables 2, 3 and 4 of

the Appendix, we observe that for fixed A the power function

n
for the restricted alternative with ﬂ* = uI- is greater than

. "
other power function for different cone angles -3- and 2.

For '= -g_ and ':T_:"’ the power function of the M.D.L.R.T. is
nearly close to the power of the Modified L.R.T.. But for
these tests we observed that there is no existence for that
more restrictions on the alternative space give more powerful

test., so at ﬁ* = n/4 we get more powerful test,

In subinterval of 3 and for the M.D.L.R.T., we get that
the powere function at B* = ws6 is better than the povwer
function at ﬁ* = n/3. Also for the Modified L.R.T., 1in
subinterval of 3, the power function at ﬁ' = /6 is hetter

than the powexr function at ﬁ* = n/3.

The L.R.T. hag the property that the more restrictions
on the alternative space will give more powerful test. Also,
we conclude that the L.R.T. ¢va i an inadmierible test for
the problem PC(V,3; i=2 and 4. In énneral the L.R.T. ¢Vi is an
inadmissible test. for the problems PQVJ) where j < i, 1, j=2,4

and B.
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TABLE 1

The derivative of the curve G, for %= 30° , 60° and 78°

where G, im the bpundary of the acoceptance

region in the cone Vi*

A% = 30° g* = 60° g" = 78°

X y Y- Y ¥ y Yy~
0.10 6.041 -2.406 4.768 —0.496 4.328 -0.171
0. 20 8.003 -2.308 4.682 -0.498 4.261 -0.170
0. 30 8.764 -2.390 4,896 -0,493 4.198 -—0,168
0.40 B.627 -2.381 4.811 -0.492 4.138 -0.167
0. 80 B.490 -2,372 4.426 -0.490 4.073 -0.168
0. G0 B.3653 -2.364 4.341 —0.489 4,012 -0.164
0,70 B.217 -2.3B8 4,287 0,487 3.981 ~-0.162
0. 80 B5.081 -2.346 4.172 -0.486 3.801 -0.161
0.90 4.946 -2.337 4.088 -0,484 3,831 -0,180
1.00 4.811 -2,329 4.008 -0,483 3.772 -0.188
1.10 4.677 ~2.320 3.021 ~0.481 3.714 -0.186
1.20 4.843 <-2,311 4.838 -0.480 3.686 -0.166
1.30 4.410 ~2.302 3,788 ~0.478 3.8598 —0.183
1.40 4.277 -2.2093 3,672 —0,477 3.841 -0.182
1, 50 4.148 =2,284 3.690 -—0.478 3.488 -0.161
1.60 4.014  ~2,278 3.508 -0,474 3.420 ~0.149
1.70 3,883 -2.266 3.426 -0.472

1.80 3.762 -2.268 3.344 -0.471

1.90 3,622 2,249 3.263 0,469

2.00 3.492 -2,240 3.181 ~0,468

2.10 3.363 -2.231 3.101 -0.466

2.20 3.238 -2.222

2.30 3.107 -2.213

2.40 2.979 -2.204

2.80 2.882 -2,196

2. 60 2.726 -2.187

2.70 2,600 -2.178

2,80 2.474 -2.170

2,90 2.349 -2,161

3.00 2.228 -2.183

Notice that the range of the cﬁrve G, varies with ﬁ*, for this

reason there are missing values for the case of ﬁ*mﬁon and ﬁ*=750

- 5 e
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TABLE 2
The power function of the L.R.T. for

the case ﬁ*=n/4

_ value of A
N | .2 .3 .4 . B .6 .7 .8 .9

.B202 ,4498 .3986 .3487 .9084 .2638 2223 .1794 .1320
.B243 .4830 .3988 .3H13 .3076 .2686 2238 ,1808 1327
.B282 .4862 .4013 ,3837 3097 .2673 .2282 .1816 .1334
L6319 .4894 .4040 ,3860 3117 .2690 .2266 .1826 .1341
.B3B8 .4624 .4066 .3682 .3138 2706 2278 ,1838 .1347
L5390 ,468B2 .4090 .3603 .3183 .2721 2290 .1848 .1383
.B422 4679 .4114 .3623 .3470 .2735 .2301 .1853 1388
,84B4 .4708 .4136 .3642 .3186 .2748 ,2312 .1861 .1364
.B484 .4730 ,4487 .3660 ,3201 .2761 2322 .186% .1369
10}.8612 .47B4 .4177 .3677 .3246 .2773 .2332 .1876 .1373
11|.9839 .4776 .4198 .3693 .3220 .2784 2341 .1883 .1378
12|.8864 .4797 .4213 .3708 .3242 2794 2380 .1890 .1382
13].B888 .481i7 .4230 .3722 .3284 .2804 .23867 .1896 .1386
14].B611 .4836 .4246 .3736 .3268 .2813 L2368 .1901 .1390
15]|.8633 .48B4 .4261 .3748 .3278 ,2822 .2372 ,1906 .1303
16|.8683 .4871 .4278 .3760 .328B8 .2830 .2378 .1911 .1396
17].8672 .4887 .4288 3774 .3294 .2837 .238B4 1918 1300
18|.8690 .4901 .4301 .3781 ,3303 .2844 .2389 .1919 1401
19{.B706 .4918 .4312 3791 .3311 .2850 ,2394 .1023 1404
20|.8722 .4928 .4323 .3799 .3318 .2886 .2398 ,1926 1406
21|.68737 .4940 .4333 .3808 ,3324 .2861 .2402 .1929 1408
221.87B0 .4951 .4342 .3816 .3330 L2866 .2406 .1932 1409
23|.8763 .4962 .4380 .3822 .3336 .2870 .2409 .19034 .1411
24{.8774 .4971 .4368 .3828 ,3341 .2874 .2412 .1936 1412
25|.85788 .4980 .4368 .3834 .3348 ,2877 .2414 .1937 .1413
26|.8798 .4988 ,4372 .3839 3349 ,2880 .2416 .1938 .1413
271.8804 .4998 ,4377 .3843 .3382 .2882 2417 .1939 .1414
28|.6812 .5001 .4382 .3847 .3388 .2884 .24192 .1940 .1414
20|.8820 .BOO7 .4387 .3850 ,33B7 .2885 .2419 ,1940 .1414
30(.B826 .5012 .4390 ,3883 .33859 .2886 .2420 .1940 .1414
31|.8832 .B016 .4393 .38BB .3360 .2887 .2420 .,1940 .1414
321.8837 .0020 .4396 .388B6 .3361 .2887 .2419 ,1939 .1413
33].8842 .5023 .4398 38687 ,3361 .2887 2419 .1939 1412
34|.6848 .6026 .4399 .3888 .3364 .2886 .2418 ,1937 .1411
35|.8848 .8027 .4400 .3888 ,3360 .2886 .2416 .1936 .1410
36|.68861 .8028 ,4400 ,38B7 .3359 .,2883 L2418 .1934 .1409
37].6862 .H029 ,4400 .3886 .3387 .2882 2413 .1932 1407
3g|.6863 .B020 .4399 .3868 .3388 .2879 .2410 .1930 1406
30|.88584 .B0Z8 .4397 .3862 .33B3 .2877 .2407 .1927 1404
401{.B853 .BOZ7 .4398 ,3850 .3380 .2873 .2404 .19258 .1402
41|.6852 .B028B .4393 ,3847 .3347 .2870 .2401 .1922 1300
42|.8881 .8022 .43900 .3843 ,3343 .2866 .2397 .1918 1397
43|.6848 .B019 .4386 .3839 .3338 .2862 .2393 1918 1394
44 .BB4§ 5015 .4382 .383H .3334 .2867 .2389 .1911 .1391

ORNDARWNR] D

Note: This table gives the powers of the M.DLL,R, T, and modified
L.R.T. since they are pquivelant. to the L.R.T. for ﬂ*mnfd
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TABLE 3
The power function of the L.R.T. for
the case ﬁ*=n/2

value of A
.1 2 .3 .4 .B , 6 T

IB .9

L4949 . 4233 .3694 3232 .2810 .2410 .2018
. B043 .4313 .3763 .32092 .2862 .2484 .2084
L5131 .4387 .3827 .3348 2910 .2494 .2087
.B6213 ,44B87 .3887 .3399 2084 2832 2118
.B289 .4821 ,3943 ,3447. .2996 .2667 .2147
.B368 .4880 .30994 ,3492 .3034 .2600 .2173
5421 .4634 ,4041 ,3833 .3069 2629 2108
.B47T8 .4683 ,408B4 .3G70 .3101 . 2687 2221
LBB290  .4728  .4123 .3604  .3131 2682 2441
.B874 .4768 ,418B8 3638 .3168 2706 . 2260
.B616  .4804 ,4190 .3663 .3182 27206 2278
L8681 .4836 .4218 3688 3204 .2744 .2293
. 5683 ,4868 .4244 3711 ,39223 2761 . 2307
LBT13  .4890 .4267 3730 .3241 . 2T76 . 2320
.BT38 .d4912 ,4286 .3748 .3286 .278% .2330
.B786 .4931 ,4303 3763 .326%9 2800 2340
L,BT74d .4947 .4348 3776 .3281 .2810 .2348
LH780 4064 .4330 . 3787 .3200 2818 2306
LB801 L4972  .4340 3706 ,3208 .2828 2361
.BB10  .498B0 ,4348  ,3802 .3304 2830 .2368
.Bgiﬁ .4986 ,4383 .3807 .3308 .2834 23068
L8820 .4990 .438B6 .3910 .3311 .2836 2370
,B821  ,4991 ,4387 .3811 .3312 2837 2370
,8820 .4990 .4386 .3810 .3311 .2836 2370
,BB16 .4986 .43B3 .,3807 .3308 .2834 2368
,B810 .4980 .4348 ,3803 .3304 .28B30 2368
LEB01 . 4972 .4340 .3796 .32908 .2820 . 2361
.B789 .4961 .4330 .3787 .3291 .20819 2385
.B774 .4948 .4348 3776 .3281 2811 |, 2349
.B7B7  .4931 .4304 .3764 .3270 .2801 .2340
.B736 .4912 .4287 .3748 .3287 .2780 2331
LB712  .4800 4267 .3731  .3241 . 2776 . 2320
.B68B4  ,4868 .4248 .3711 3224 .2762 2308
.B6B2 .4837 .4219 .,3689 .32068 2746 .2294
LB616 .4804 .4191 3664 .3183 2726 2278
.BBTE .4768 .4189 .2636 .3189 .2706 .2261
LBB30  .4728 .4124 .3608 .3132 .2683 2242
L,B479 .4684 .40868 .3871 .3102 .2668 2221
.Bd422 .4635 .4042 .38B34 .3070 .2630 .2199
,B38B9 .4881 .3995 .3493 .3036 .2601 .2174
LB200 ,4822 .3944 .3449 29097 .2B68 .2148
.B214 .44B8 .3880 3401 .2956 .2833 2119
.B132 .4380 .3B820 ,3340 2011 .2408 .2088
.5044 .4314 .37658 .3293 ,2863 .248B86 .208608
L4980 ,4238 .3696 .3234 .2812 .2411 .2019

L. 1620 .1193

1648 1211
L1673 L1228
L1697 1244
L4719 L1289
1740 1272
. 1789 .1288
LATTT 1297
L1793 . 1308
.1808 1310
. 1822 1328
.1834 1336
.1848 .1344
.18568 1381
. 1864 . 1387
. 1871, 1362
. 1878 1367
1883 1371
.1888 1374
L1881 L1376
.1893 1378
1898 1379
. 1898 1379
18958 1379
1893 .1378
. 1891 1376
.1888 1374
.1883 , 1371
.1878 1367
.1871 1362
.1864 . 13067
.1868 .1361
L1848 L1344
.1834 1337
, 1822 L1328
.1809 . 1319
L1794 . 1309
L1778 . 1208
L1760 L 12B6
L1741 1273
L1720 . 4280
L1698 L1244
L1674 . 1248
.1648 12142
L1624 . 1194

Note; This table gives the powers of the M.D.L.R.T. and modified

L.R.T. since they are equivelant to the L.R.T. for @'=n-2
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TABLE 4
The power function of the L.R.T. for

the case ﬁ*-2n

value of A
.1 . 2 .3 . 4 .B .0 .7 .8 .0

1o 4
N ol sl Rh o Wa T-SAE ST B

L4923 L4207 .3668 .3206 .2788 .238B6 109968 .1899 1478
L4068 .4242 .3699 .3233 ,2808 .2406 .2011 .1612 .11i84
.8006 .4277 .3729 .3289 ,2831 ,2428 ,2027 .1624 1192
.§047 .4311 .37B8 .3285 ,28B63 2444 2043 .1636 .1200
.BOB6 .4344 .3787 .3300 ,2874 .2462 .20B7 .1648 1208
.B128 .4377 .3814 .3333 .28068 .2479% .2072 .1669 .1218
.B162 .4408 ,3841 .3386 .2918 .2496 2086 1670 .1222
(5198 .4438 ,3867 ,3J378 .2034 .2B12 2009 .1680 1220
'B233 .4467 .38992 ,3400 .29B2 2828 .2112 .1690 .1236
'B266 .4408 .3916 .3421 .2070 .2543 .2124 .1700 .1243
.B208 .4B22 .3039 .3440 ,2987 .28B87 .2136 1709 .1249
.B328 .4B47 .3961 3460 .3003 .2687t1 .2448 ,171iB 1288
.B3B7  .4872 .,3982 .3478 .3019 26884 2189 1727 .1261
.B385 .4806 .4003 .3498 .3034 .2897 .2169 .1738  .1267
.8411 .46148 ,4022 .3812 .3048 .2609 2179 .1743 .1272
.Bd37 .4640 .4041 .3828B .3062 .2621 .21890 17680 .1277
.8460 4660 ,4068 .3644 .3076 .2632 .2198 1768 1282
.5483 .4680 .4078 .3668 .3088 2643 .2207 .17686 .1287
.B5804 .4698 ,4091  .3872 .3100 .2683 .2216 .1771 .1202
.B824  ,4716 L4107  .3886 3142 2663 2224 1778 .12006
.BB43 .4732 .4121 .3898 ,3123 L2672 ,2231 .1784 .1300
,BB61 .4748 ,4438 .3611 .3133 ,2681 2230 ,1789 1304
.BB78 .4763 .4148 .3622 .3143 .2689 ,2248 .1798 ,1308B
"BED4 .477T7 .4161 .3633 ,3162 ,2697 2282 .1800 ,1312
CB609 L4790 .4172 .3643 .3161 .2708 .22688 .1808 .1318G
.B8623 .4803 .4183 ,36853 .3416% 2712 .2264 .1810 .1318
.B636 .d4818 .4194 .3662 .3177 .2718 2270 1814 1322
"B648 .4828 .4203 .3670 .3184 2728 .2276 .4818 1324
.B660 .4836 .d4212 .3678 .3191 .2731 . 2280 .1822 ,1327

.B670 .484B .4221 .3688 .3198 .2736 .2284 .1826 .1330
L5680  .4884 .4220 .3692 .3204 .2741 .2280 .1820 ,1332
.B689 .4862 .4236 .9699 3209 2746 2292 .1832 1334
.B697 .4870 .4242 .3704 .3214 .27BO0 .2296 .1838 ,1336
.B706 .4876 .4248 .3710 .32190 27864 2200 .1838 ,1338
.B712 .4883 .4284 .3718 .3223 .2768 2302 ,1840 .1340
.B718 .4888 .4289 .3719 .3227 ,2761 23068 .1842 .1341
L5723 .4893 .4263 .3723 .3230 .2764 2307 .1844 .1343
LB7T28 .4807 4267 .3726 ,3233 .2766 .2310 .1846 .1344
L8732 .4901 4271 .3729 .3236 .2769 2311 .1847 .1346
L8736 .4904 ,4273 .3A732 .3238 .2771 .2313 .1848 1346
"B7T39 .4007 .4276 .3734 .3240 .2772 .2314 .1849 .1346
.5741 .4909 .4278 .3738 .3241 2773 .2318 .1880 .1347
.B742 .4910 .4279 .3737 .3242 .2774 .2316 .1881 .1347
.B743 .4911 ,4280 .3737 .3243 2778 .2316 .1881 1348
CHT4A4 L4911 L4280 3737 3243 .2TTH L2317 . 1881 . 1348
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TABLE 4, vont.

value of A
[3 11 ‘2 03 44 -5 .‘6

l7

.8 .9

46| .B743 49114 ,428B0 .3737 .3243 L2778
a7} 8742 (4940 4279 .373I7T .3242 .2774
48{ .B741 .4909 .4278 .3738 .3241 .2773
49| .BT39 .4907 4276 ,3734 .3240 2772
Bo| .B736 .4904 .4274 .3732 3238 2771
1| .B8732 .4001 L4271 .38729 ..3236 .2769
82| .B728 .4898 .4267 .3727 .3234 .2767
83| .B724 .4B93 ,4264 .3723 .3231 .2764
Ba| .6718 .4888 ,42BY .3719 .3227 2761
5| .5712 .4883 .4264 3718 .3224 .2768
B6| .B708B .4877 .4249 .3710 .3219 27854
g7| .8698 .4870 ,4243 .3708 .3218 .Z2761
gal .B8689 .48B62 ,4236 3699 ,3210 .2746
Be| .B6B0 ,48864 .4220 ,3693 .3204 .2742
60| .B671 .4846 .4221 .3686 .3198 2737
61| .B660 .4836 .4213 .3678 .3192 .2731
62| .B649 .4826 .4204 .3671 .3186 .2728
63| .B637 .4818 .4194 .3662 .3478 .2719
64| .B624 .4803 ,44184 .36853 (3470 2712
68| .B610 .,4791 .4473 .3644 .3162 2708
66| .BB98 .4778 .4164 .3633 ,31B3 .2698
67| .BB7T9 .4764 .4149 .3623 .3144 .2690
68| .8B62 .4749 .4136 .3611 .3134 . 2682
60| .BB44 .4733 .4422 3699 .3123 2673
70| .BB28B .4717 .4108 ,3887 .3113 2664
71| .BBOB  ,4699 .4092 .35673 .3101 .2684
72| .B4B4 .4680 L4076 .3BB% 3089 20644
73| .B8461 (4661 4089 ,3848 .3076 .2633
74! ,8437 .4641 .4042 ,3629 3063 .2622
78| .B412 .4619 4023 .38513 .3049 .2610
76| 8386 .4B97 .4004 .3496 .3030 2608
771 .B83B8 .4873 .3983 .3479 .3020 2688
78| .B8320 .4848 ,3962 .3461 .3004 2872
70| .8299 .4623 .3940 .3442 .2088 2888
80| .B8267 .4496 .3917 .3422 .2071 .2844
81| .B234 .4468 .3893 .3401 .2083 .2829
82| .8199 .4439 ,3868 3380 .2938 20813
B3| .B163 .4400 .3842 .3388 (2916 2497
84| .5126 ,4378 .3816 .3338 .2896 .2480
gs| .8088 ,4346 .3788 ,39311 2876 .2463
86| .B048 .4313 ,3760 .3286 .2864 .2448
87| .8008 .4279 ,3731 .38261 .2832 2426
g8 ,4966 .4244 3700 .3234 .2B1L0 2407
89| .4924 .4208B 3669 .38207 .278B6 23087

. 2316
. 2316
. 2318
L2314
, 2313
. 2312
» 2310
. 2308
~2308
. 2303
. 2300
+ 2290
., 3293
. 2289
. 2288
. 2280
. 2278
. 2270
. 2268
. 2289
., 2283
. 2246
. 2239
. 2232
. 2224
. 2216
. 2208
. 2199
. 2190
. 2180
. 2170
. 2189
. 2148
. 2137
.2128
. 2113
. 2100
. 2087
. 2073
, 20688
. 2044
. 2028
» 2042
L1996

.1881  .4348
.1881 ., 1347
1880 1347
.1880 .1347
1849 . 1946
1847 .1348
» 1846 1344
1844 .1343
1842 1341
. 1840 ,1340
.4838 .1338
.4838 , 1336
. 1832 . 1334
.182% .1332
. 1826 .41330

.1822 1327
1819 ,1328
.1814 .1322
.1810 .1319
.1808  .1316
.1804 ,1312

. 1798 .1308
.1720 .1308
.1784 .1301
L7778 L1297
ATT2 1292
1768 .128B8
.1788  ,1283
LA781 . 1278
LA743 . 4273
L4736 . 1267
LAT27 1261
L1719 . 1286
1740 . 12B0
L1700 . 1243
L1691 1237
1681 . 1230
» 1670 ,1223
L1660 1216
1649 . 1208

. 1637 . 1201
.1628 11093
. 1613 .1184

1600 .11706

Note: This table glves the pﬁwers of the H.D

- IJ' R. T‘

and madified

L.R.T, since they are gquivelanh to the 1.R.T. for Pt=2n
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The

TABLE B
power function of the M.D.L.R.T. for
the case ﬁmﬂufﬁ

value of A

3 .1 2 .3 .4 . B .6 .7 .8 .9

1] .B228 .4B21 .30980 .38509 ,3073 .2683 .2233 .1797 .1314
2| .B263 .4B5B0 .4008 .3631° .3002 2668 .2248 .1806 .1320
3] .B296 .4878 ,4029 .,3861 .3109 2682 .2267 .1815 .1328
41 .B6328 ,4604 .40B1 3570 .3128 .2606 .2267 .1823 1331
Bl .B3B8 .4620 .4072 .3888 ,3140 2708 2277 .1831 1335
G .B6387 .468B2 ,4092 .3608 .3164 .2720 .2287 ,1838 .1340
7] .6414 4678 .4110 ,3620 .3167 .2731 .2296 .16844 .1344
8] .6440 .4696 .4128 ,3638 .3180 .2741 .2304 .418B0 .1348
@l .B464 .4718 4444 .3649 .8191 2760 .2311 .1886 .1351
101 . 8487 .4734 .41859 ,3661 .3202 ,27B0 ,2318 ,1861 1354
11 .6809 .47B1 .4174 .3673 .3211 .2767 .2324 .1868 .13B7
121 .8829 4767 .4487 .,368B4 ,3220 .2774 .2330 .1869 1360
13{ .06049 .4783 .4199 ,3694 .3228 ,2780 .23368 .41873 ,1362
14 .B0O67T .4797 .4211 ,3704 1.3236 .2786 .2330 .1876 .1364
15| .8684 .4810 .4222 ,3712  .3242 .2792 .2343 .1879 1366
16| .8600 .4823 .4231 .3720 .. 3249 .2706 .2347 .1882 .1368
17 8614 .4834 ,4240 .3727 .32B4 .2800 .23850 .1884 1369
181 .5628 ,4848 .4248 .3733 .32689 .,2804 .2362 .1888 1370
191 .8641 .48B4 .4266 .3739 ,3263 ,2807 .2384 .1887 .1371
20| .8663 .,4863 .4263 .3T744 ,3266 .2809 .2386 .1888 1371
211 .B664 .4871 .4269 .3748 ,3269 ,2811 2387 .1888 1372
22] .B674 .4878 .4274 .37B2 ,32v2 .2813 .2368 .1888 .1372
23| 8683 .488B8 .42Y8 .3788 .3274 .2814 .2388 .1888 1371
241 .8691 .4891 ,4282 3757 .3275 .2814 .2388 ,1888 1371
281 .0698 .4896 .4286 L3769 .3276 .2814 ,2387 ,1887 .1370
26| 8708 .4900 .4288 .3760 ,3276 .20844 .236B6 .1886 .1369
271 8711 .4904  .4200 .3761 .3276 .2813 .28B8 .1885 1368
281 .8716 ,4907 .4202 .,3762 .3278 .2812 ,23B3 .1883 .1367
20| 8720 ,4909 .4293 .3761 .3274 .2840 .2351 .1881 .1366
30| .B8724 .4911

A

4203 ,3760 .3273 .2808 .2349 .18B70 .1364
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TABLE ©
The power function of the M.D.L.R.T. for
the case ﬁ*=ﬁ/3

value of A

(3 - 1 4 s 4 3 * 4 - B - 6 + 7 * B - 9
1] .BOB1 .4369 ,3828 .9361 ,2931 .2821 .2114 .10697 .1242
2| .8124 .440858 .385Y ,3387 ., 2084 .28640 .2130 ,1700 ,4280
3| .B168B .4439 .3888 ,3413 ,2976 .2888 ,2148 1720 1287
4| .B204 4472 .3917 .3437 .2007 .28B76 .2189 .1731 .1264
8| .B242 .48504 ,3944 .3461 .301i7 .2892 2473 (1741 1270
6| .B279 .4B834 .3970 .3483 .3036 .2608 .2188 .1781 .1277
7{ .B314 .,4863 .39968 .3608 .3084 .2624 .2198 1761 .1283
g| .B347 .4691 .4019 .3828 .3072 .2638 2210 ,1770 .1289
o| .5a70 .,4618 .4041 .3844 .3088 2682 2221 .1778 .1294
10| .B5410 .4643 ,4063 ,3863 ,3104 .2668 .2231 ,1786 1200
11} .B439 ,4668 .4084 3680 .3149 2677 .2241 ,1794 .1304
12| .B466 .4691 .4103 .3897 .3133 L2689 .2281 ,18014 1300
13| .8492 .4712 .4122 .3613 .3146 2700 .2260 .1808 1314
14| .8BB17 .4733 .4139 .3628 .3189 ,2711 .2268 ,1814 .1318
18| .BB40 .4783 .41B6 .3642 .38171 .2721 .2276 .1820 .1322
16| .6862 .4771 .4472 .3658 .3182 2730 .2284 .1826 .1326
17| .6883 .,4780 ,4187 .3668 .3192 ,2738 .2290 .1831 .1329
18| .8603 .4808 .4201 ,3680 ,3202 2747 .2207 .1836 .1332
19} .B8621 .4821 .4214 .3601 .3211 .2784 .2303 .1841 .1338
20| .B638 ,4835 ,4226 3701 .3220 .2761 .2309 .,1848 .1338
21| .B6BB .48B49 .4238 .3711 .3228 2768 .2314 .1849 .1341
22| .BGTO .4B62 .4248 .3720 ,3238 ,2774 .2318 1882 1343
23| .B684 .4B74 .4288 ,3728 .3242 277D .2323 .1888 1348
24| .B6Y7 .4BBB .4268 ,3736 .3249 ,2784 .2327 .1888 1347
28| .8709 .4808 .4276 .3743 .3284 .278% .2330 ,1861 .1348
261 .68720 .4908B .4284 .3749 ,3260 ,2793 .2333 .1863 1380
271 .B731 .4913 - .4291 .3768B .3264 2797 .2336 .1868 .1381
28| .6740 .4921 .4208 3760 .3269 2800 .2338 1867 .138B2
20| .B749 .4928 .4304 .3I7685 .3272 .2803 .2340 .1869 1363
30| .B787 .4938 .4309 3769 .3275 .2808 .2342 .1869 1364
34| .B764  .4941 .4314 .3773 .3278 .2807 .2343 .1870 .1364
32| .B771 .4946 .4318 .3776 .3280 ,2800 .2344 .1870 .1384
33| .B776 .4980 .4321 .3779 .3282 .2810 .2348 .1871 .1304
g4| .B781 .498B4 .4324 .3781 .3283 .2810 2348 .1871 .13B4
35| .5788 .4987 .4326 .3782 .3284 .2811 .2348 .1870 .1354
a6| .BTBD .4960 ,4328 ,3783 ,3285 .2811 .23468 1870 .1363
a7r| .B792 .4961 .4329 .3783 .3288 2810 2344 .16869 .1383
ag| .B794 .4963 .4329 ,3783 ,3284 .2809 .,2343 .1868 1302
a0| .B798 .4963 .4329 .3783 .3283 .2808 .2342 ,1866 .1361
40| .B7D6 .4963 ,4320 .9782 .3282 ,2006 2340 ,1868 1349
41| .B7T96 .4963 .4328 .37BO .3280 ,2804 .2338 1863 1348
42| .B796 .4962 .4326 3778 .3277 .2802 .2336 ,1861 13406
43| .870B (4960 .4324 3776 .3278B L2799 ,2333 .18068 1344
44| .B793 .4987 .4321 ,3773 .3272 .2796 .2330 .188B6 .1342
48| .B8790 .49B4 .4317 3769 .3268 2792 .2326 .1883 1340
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TABLE 6, wont.

value of A

ﬁ 01 02 .3 04 ‘B 46 l7 ‘8 'g
46| .85787 .4981 .4314 .3768 .3264 .2788 2323 .1880 .1338
47| .B7B3 .4946 .4309 .3760 .3289 .2784 .2319 .1846 .41338
i8| .B77TO .4041 .4304 .3765 .32B4 2779 .2914 .1842 1333
49| .B8774 .4936 4298 3750 .3249 2774 .2310 1838 ,1330
ol .B768 .4930 .4202 .3743 .8243 .2769 2308 ,1834 1327
il .B761 .4923 ,4288 .3737 .3237 .2763 .2290 ,1830 1323
g2| .57684 .491B .4278 .3730 .3230 .27B6 .2294 .1828 .1320
83| .B746 .4907 .4270 3722 .3222 .27B0 .2208 ,1820 1316
B4| .B737 .4808 .4261 .3713 .3248 .2742 .2281 .1848 1312
g5| .B728 .4889 .4262 .3708 .3206 .2736 .2278 .1809 ,1308
86| .B8717 .4878 .4242 .3698 .3197 2727 .2267 .41803 .1304
57| .6706 .4867 .4231 .3688 .3188 .2718 .2260 ,1797 .1300
68| .6604 .48BB .4220 .3674 .3178 .2709 .2282 .1790 .1298
go| .B681 .4843 .4208 ,3663 .3168 2700 .2244 .41784 1201
60| .Ba68  .4829 ,4198 3681 .3187 L2238 1777 . 1286

. 2690

www.manaraa.com



The

TABLE 7

power function of the modified L.R.T. for

the case ﬁ*=n/6

value of A

3 A .2 .3 4 .8 .6 .7 .8 .9
1] .8300 .4896 .4088 .3882 ,3143 .2717 .2291 .1848 1348
21 .B328 ,46419 .4078 .3899 3187 2729 ,2300 .1863 .1383
3] .8388 .d4641 .4094 .36186 .3471 L2741 , 2309 .188% 1387
4| .H3IBO .4662 4111 3630 3483 L2761 L 23417 .1868 . 1361
B| .B403 .4691 .4127 ,3643 .3194 2760 2320 .1870 .1364
6| .68428 .4698 4141 .3688 .3204 2768 .2331 .1878 1367
7| .B448 .4714 .4184 .3666 .3213 .2776 .2337 .1880 ,1370
g| .B464 .4729 4166 3676 .3222 .2782 .2342 .16883 1372
9| .B482 .4743 .4177 .3686 .3229 2788 .2346 .1887 L1374
10| .85400 .4788 .4187 .3693 .3238 2793 .2360 .188%9 1376
11| .B844 .4767 .4196 L3700 .3240 2797 .2363 .18Q2 1377
12| .8B29 .4777T .4204 3706 .3248 ,2800 23686 .1893 1378
13| 6842 .4787 .4241 ,37441 ,3249 .2803 .2388 .1898 1379
14| .8664 .4796 .4218 ,3716 .3262 .2808 .2389 .1898 1380
15| .5866 .4804 ,4223 ,3720 ,.32808 .2807 .2360 .1896 1380
15| .BB66 .4804 .4223 3720 .3288 ,2807 .2360 .1896 1380
16| .6876 .4811 ,4228 ,3723 .3287 ,2808 2360 .1896 1380
17| .BE88 .4817 .4232 .3728 .3268 .2808 .2360 1896 41379
18| .B894 .4822 .4238 .3727 ,3268 ,2808 2360 .1898 .1379
19| .8602 .4827 ,4237 .3728 ,3288 20807 .23069 .1804 1378
20{ .B609 .4831 .4239 3728 .3288 2806 2367 .1892 1377
21| .B6168 .4834 .4241 .3728 ,3JI26ET7 2804 2388 .1890 ,1378
22| .B620 .4836 .4241 3727 .3280 .2802 .2353 .1888 1374
23| .B628B .4838 . 4244 ,3726 ,3283 ,2799 .2380 .,1BBG .1372
24| .B628 .48B39 ,4240 .3724 .3280 .2796 .2347 .1882 1370
28| .B631 .4840 .4230 3722 .3247 .2793 .2343 .1879 1367
26| .B634 .4830 .4237 .3719 .3243 .2789 23390 1876 .13658
27| .B636 .4839 .4238 ,37168 .3239 ,2784 23368 .1872 .1362
28| .B6A37T .4837 .4232 ,3d714 3234 2779 ,2330 .1848 1389
20| .8B8637 .4838 .4220 3707 .3229 L2774 .2328 .1863 .1346
30| .B637 .4833 .4228 .3T702 .3224 2768 .2319 .18858 1363
'
-~ 7L -
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The

TABLE 8

power function of the wodified L.,R.T. for

t.he case ﬂ*ﬂn/B

value of A

www.manaraa.com

gl .1 .2 .3 .4 .8 .6 .7 .8 .0
11 .8080 .43868 .3828 ,3362 ..2933 .2823 ,2118 1702 .1249
21 (5124 .4408 .3860 .3389 2086 .2043 .2134 .1718 1287
3| 'B168 .4440 .3B00 .341B .2979 2862 .2149 .1726 .126B
4| 5206 4474 .3910 .3440 .3000 2880 2164 1738 1272
B| .B248 .4807 .3947 .3464 .3021 2897 .2178 ,174B 1279
6| 'B282 .4B38 .3974 .3488 .3041 2614 .2192 1769 .1286
7| ‘6318 .4B68 .4000 .3B10 .3060 .2630 - .2208 .1769 1292
g| (B33 .4897 .4024 .3831 .3078 L2646 2217 .1778 .1208
ol 5386 .4624 .4048 .3B61 .3098 ,2689 2229 1787 .1304
10] .B417 .4681 .4070 9870 .311%1 . 2673 .2240 1796 1310
11| 8447 4676 .40D2 .3689 .3127 2686 .2281 ,1804 1318
12| B47H 4700 .4112 .3606 .3142 2699 2261 1811 .1320
13| .BBO2 .4722 .4132 .3623 .31H6 .2710 .2270 .1819 .1328
14| [BB28 .4744 .4150 .3639 .3169 .2722 .2279 .1826 .1330
18| .BBB2 .4768 .4168 .3684 .3382 ,2732 .2288 1832 .1334
16| (BB78 .478B4 .4184 .3668 .3I104 2742 .2296 .1839 .1338
17| .BBO7 .4802 .4200 ,3681 :.3208 L2762 .2304 .1844 1342
18| .B617 .4820 .4218 .3694 .3216 .2760 .2311 .1880 .1346
10! _BE36 .4836 .4229 L3706 .3226 2769 .2317 18688 .1349
20| .BaBd .4881 .4242 3717 .3236 2777 .232¢ ,1860 .43B3
21| 'B671  .4B66 .4284 . 3727 .3244 2784 .2330 .16864 .13BB
52| .Be8T .4mTO 4266 .3737 .3263 2791 L2335 .1868 1388
23| (8702 .4892 .4277 .3746 .3260 2797 .2340 .1872 .1361
24| .B712 .4904 .4287 .3785 .3267 .2803 2348 .1878 .1363
28| Br2B .491B 4206 .3763 .3274 .2808 ,2349 1879 1368
26| 5740 .49258 .4308 .3770 .3280 .2813 .2383 .1881 .1367
27| .B7A1  .4936 .4313 .3777 .3288 .2817 .2356 .1884 .1369
28| (B761 .4943 .4320 .3783 .3290 ,2821 L2369 1886 .1370
20| .g771  .4951 .4327 .3788 ,3208 ,2828 ,2362 1888 1371
‘30| .g770 4988 4333 ,3793 .3290 ,2028 2364 .1890 1372
at! .B7BT .4968 .4338 L3798 ,3302 2831 2366 .1891 1373
32| .B794  .4971 .4343 3801 33068 2833 2368 1892 1374
33| .8800 .d4976 .4347 .3808 .3308 2835 L2369 ,1893 ,1374
32| .B8O6 .4DBO .4361 3808 .3310 ,2836 .2370 .1894 .1378
35| 6811 .4984 .4384 .3810 .4A312 2837 2374 ,1894 1378
36| .BB1B .4987 .43B6 .3812 ,3313 ,2838 .2371 1894 1376
37| .s818 .4990 .4388 .3813 3313 ,2838 2371 1894 1374
3g| .B821 .4902 .4380 .3814 .3314 ,2838 .2370 .1893 1374
30| .§823 .4993 .4360 .3614 .9314 2838 2370 .1692 1373
10| .BB2B 4904 .4360 .9813 .3313 L2837 2360 .1801 1372
41| .BB28 .4994 .4360 .9813 3312 ,2835 2357 1690 1371
42| .@828 .4994 .4360 .3841 .3310 ,20834 L2366 1889 1370
43| (6828 .4903 .4368 .3810 .3308 ,2832 .2364 1887 1369
44| .BB24 .4991 .43B6 .3808 3306 L2020 2361 L 1AAF 1367




TABLE 8, conti.

value of A

sl .1 .2 .3 .4 .8 .6 .7 .8 .0
48| .B822 .4980 ,4383 ,3808 .3303 ,2027 2369 .1882 1366
46| .B810 .4086 .43B50 .3802 .3300 .2824 .23B6 .1880 .1364
47| .BB16 .4982 .4346 .3798 .3206 2820 .2383 .1877 1362
48| .B812 .49078 ,4842 .3794 .3202 .2816 .2349 ,1874 1389
49| .8808 .4973 .4337 .3789 .3288 ,2812 2345 .1871 1367
80| .6803 .4968 .4332 .3784 3283 2807 .2341 .1867 .1364
81| .B797 .4962 .4326 .3778 .9277 .2802 .2336 .1863 1362
52| .8790 .4988 .4319 ,3771 .3271 2797  .2331 18069 1349
83| .8783 .4948 .4312 .3768 .3266 .2791 .2326 .18G66 .1348
B4| .B778 .4940 .4304 .3767 .32688 ,2784 2321 1860 1342
88 .B8766 .4931 .4296 .3749 3280 .2778 .231H .1848 1339
B6| .87B7 .4922 .4287 .3741 .3243 2770 ,2308 ,1840 133§
87| .B7d6 .4912 .4277 .3B732 .3234 L2763 .2302 .1B358 .1331
88| .B7358 .4901 .d4267 .3722 .3228 .27BB 2208 .1820 1327
Bo| .B723 .4880 .4286 .3711 .3216 .2746 .2287 .1823 1322
60| .B710 .4876 .4244 .3701 .3206 .2737 .2280 .1816 .1318
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